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Abstract

Graphs are data structures well suited to model many sources of information in

the real world, including social networks, domain knowledge, and molecules. The

availability of large datasets motivates the application of machine learning methods

in tasks such as detecting clusters, predicting links between entities, and assigning a

label to an entity. Several techniques have been proposed in the literature towards

solving these problems, some of which involve carefully designing an appropriate

representation of the data with enough predictive power that can be used to train a

machine learning model.

Instead of specifying a representation in advance, more recent approaches seek to

learn the representation from the data, so that it preserves the structure of the graph

while being useful to solve related tasks, in the absence of a ground truth. This

is the problem of unsupervised graph representation learning. We review recently

proposed methods, and we identify across them a design pattern composed by a

series of components. This turns into a modular framework that can be used to

study existing methods and devise novel ones. We validate our framework with

experiments on real world graphs, and we find that some changes in the components

of existing methods can yield significant improvements. A hyperparameter study

allows us to identify a particularly strong method of representation learning for the

tasks of link prediction and node classification.

Following recent advances in optimal transport for machine learning, we experi-

ment with a method to learn node representations using Wasserstein spaces. Under

several conditions, we find that these spaces preserve the structure of the graph well,

but in spite of regularization strategies, they do not generalize well.
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Chapter 1

Introduction

A wide variety of data in the world can be described as a set of entities that interact

between each other: people in a social network, objects in an image, atoms in a

molecule, and documents on the Internet are some examples. These sources of

information are naturally represented by a graph, a data structure that represents

entities as nodes, and the existence of a relationship between them with edges or

links that connect two nodes.

The theoretical analysis of graphs forms a field of study itself (West et al., 1996)

that has been used to model problems in the social sciences (Wasserman et al.,

1994), biology, and computer science (Dorogovstev & Mendes, 2003). Graphs have

also been proposed as a powerful tool that machines can use to reason about the

world (Battaglia et al., 2018). Just as humans observe and interact with the world

through the composition of discrete entities in observations (Biederman, 1987; Marr

& Nishihara, 1978) and the use of language (Osherson & Smith, 1981; Clark et al.,

1985), endowing machines with the ability to process graphs could improve their

understanding of the world, by the allowing them to combine knowledge in novel

situations (Lake et al., 2017; Marcus, 2018).

The arrival of new technologies has brought applications that benefit from the

collection of large amounts of graph-structured data. The availability of the resulting

graph datasets enables the use of machine learning algorithms, which learn from

observations to solve related tasks such as node classification (Sen et al., 2008; Bhagat

et al., 2011a), the design of recommender systems (Fouss et al., 2007; Backstrom &

Leskovec, 2011), knowledge base completion (Nickel et al., 2011; Yang et al., 2015a;

Schlichtkrull et al., 2018), and scene understanding (Xu et al., 2017; Herzig et al.,

2018; Liang et al., 2018).
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Some of the methods that have been proposed in the machine learning literature

require the specification of hand-engineered functions, or kernels, designed to capture

similarity between nodes (Vishwanathan et al., 2010; Kriege et al., 2019). Others

rely on features containing graph statistics, that are manually extracted (Bhagat

et al., 2011b; Liben-Nowell & Kleinberg, 2003; Barabási & Albert, 1999; Zhou et al.,

2009). These approaches rely on specific assumptions about the graph and the task

at hand, and prescribe machine learning models with a structure that might not

generalize to other graphs (Zhang & Chen, 2018).

A more promising approach is to use the data to learn a representation that is

flexible enough to capture enough information from the observation, while discarding

less revelant aspects. This is the problem of representation learning (Bengio et al.,

2013). In the context of graphs, a representation commonly consists of a real-valued

vector, or an embedding, that is assigned to each node, edge, or to the graph itself.

Embeddings are the realization of distributed representations of entities, which have

long been identified as computationally efficient (Hinton et al., 1984) and are widely

applied in deep learning. In this work, we are particularly interested in learning

representations of nodes.

In semi-supervised approaches to machine learning on graphs, where partially

labeled data for a given task is available, previous works have used Laplacian

regularization to enforce the graph structure, but they do not learn embeddings (Zhu

et al., 2003; Belkin et al., 2006; Weston et al., 2012). Following the application of

neural networks to graph-structured data (Gori et al., 2005; Scarselli et al., 2009),

more recent works consider networks as a general case of data structured in sequences

or grids (such as audio or image signals) and propose a convolutional operator on

graphs (Bruna et al., 2013; Duvenaud et al., 2015; Defferrard et al., 2016; Kipf &

Welling, 2016a). This has sparked interest in architectures for deep learning that

process graph data, such as message passing networks (Gilmer et al., 2017), attention

mechanisms (Veličković et al., 2017), and other variants (Zhou et al., 2018; Wu et al.,

2019b). These architectures provide an inductive bias to train models that learn

from graphs of different types, including directed and undirected graphs, and in the

presence of node, edge, and graph attributes (Battaglia et al., 2018).

In this thesis, we address the problem of learning representations of nodes that

capture the structure of the graph, while not being limited to a specific application.

This corresponds to the unsupervised learning problem, where we assume that no

target values are given during the learning process, although we seek for representa-

tions that have general applicability in graph-related problems. Our aim is thus to
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study and improve upon existing methods for unsupervised graph representation

learning.

1.1 Contributions

The problem of unsupervised graph representation learning has a diverse background

that has been influenced by related research in dimensionality reduction, variational

inference, natural language processing and others. In addition to this, as the field

of machine learning advances, new methods become applicable. A review of the

literature shows that several methods have been proposed that when compared,

reveal a design pattern. We make this pattern concrete by establishing a framework

of five components for representation learning on graphs.

Our modular framework allows us to analyze algorithms for representation learn-

ing on graphs, by studying their behavior under changes in their components. This

results in insights about their design and the methodology and datasets used to

evaluate them. We also question the utility of certain design choices, and we find that

in some cases, methods can be simplified significantly while retaining competitive

performance.

We additionally leverage the modular framework to devise novel variants. We

carry out a hyperparameter study that aims to find a combination of components

with improved generalization, which results in a method that outperforms all others

in the tasks of link prediction and node classification. Our analysis of this method

shows that a linear model suffices to learn embeddings that are competitive when

tested in real-world networks.

Motivated by recent results in optimal transport for machine learning (Frogner

et al., 2019), we extend our framework by considering embeddings on Wasserstein

spaces, which have been shown to be powerful spaces that preserve well the geometry

of the space on which the objects being embedded lie. While Frogner et al. (2019)

evaluate the distortion caused by the embedding on the training data using small

networks, we further expand on their results and evaluate the method on real-world

networks, in combination with different components of our modular framework. We

find that Wasserstein spaces successfully preserve the structure of the graph, but

the learned embeddings do not present a clear advantage in generalization when

compared to other methods.
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Chapter 2

Unsupervised Graph

Representation Learning

Graphs provide a way to represent information about entities and the relations

between them. They are fundamentally defined by a set of links, or edges, between

entities. For attributed graphs, every node can be further associated with a set of

features, for example demographic user features in social networks, or a bag-of-words

vector for a document in a publication network. In the absence of features, an initial

representation can be given by a one-hot-vector that uniquely identifies each node.

These features form a representation that is usually high-dimensional and sparse. We

are thus concerned with learning low-dimensional node representations or embeddings

in an unsupervised way, that capture node features and the structure of the graph,

so that they can be used by machine learning models without having to refer to the

original graph. These models could then be applied in tasks such as link prediction

and node classification.

In this chapter, we provide an overview of the problem, and we summarize the

details of methods proposed in the literature to address it. We find that these

methods can be unified under a framework that motivates extensions and multiple

questions that are treated in our work.

2.1 Problem description

We consider an undirected, unweighted graph G = {V , E}, where V is the set of

nodes, and E is the set of edges of the form (vi, vj), with vi, vj ∈ V . Let |V| = N be

the number of nodes in the graph. We define A ∈ RN×N to be the binary adjacency
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Figure 2.1: Nodes in a graph (left) represented in a continuous embedding space

(right). Under the homophily hypothesis, nodes in the same community (enclosed by

the shaded ovals) are close in the embedding space, far from embeddings of nodes in

a different community.

matrix with entries Aij = 1 if (vi, vj) ∈ E , and 0 otherwise. Each node has an

associated feature vector xi ∈ RF , which for all nodes in the graph we arrange

in the rows of a matrix X ∈ RN×F . We are interested in the problem of learning

embeddings zi ∈ RD for each node in the graph. Ideally, the embeddings should be

low-dimensional, that is, D � F , while still capturing useful information about node

features and the graph that can be used in related tasks. We denote with Z ∈ RN×D

the matrix containing all node embeddings.

In the absence of labels or a clearly predefined task for which the representations

will be used, unsupervised learning approaches for graphs regularly make use of

contrastive methods, which have general applicability when learning representations.

These methods work by defining a score S for pairs of samples that follow observations

in the data, also known as positive samples, and a score S̃ for negative samples that

deviate from observations. Learning then amounts to minimizing a loss function

designed to maximize the score for positive samples, and minimize it for negative

samples.

The contrastive method has been applied successfully to the problem of learning

representations of words (Mikolov et al., 2013b; Mnih & Kavukcuoglu, 2013; Collobert

& Weston, 2008). An example is the Skipgram model, where words are represented as

vectors in a continuous space such that co-occurring words are close in the embedding

space (Mikolov et al., 2013a). A motivation for embedding words closely based on

their co-ocurrence stems from the distributional hypothesis, which states that the

meaning of a word is characterized by its context (Firth, 1957). Its analog in the

context of graphs, the homophily hypothesis, states that connected nodes that belong

to the same community should be close in the embedding space (Hoff et al., 2002;

Fortunato, 2010), as illustrated in figure 2.1.
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The homophily hypothesis and the Skipgram model have inspired algorithms for

representation learning on graphs, such as DeepWalk and node2vec (Perozzi et al.,

2014; Grover & Leskovec, 2016), where the model is encouraged to assign high scores

to a node and its close neighbors. More recent approaches still use a contrastive

approach, while differing in their specifics.

2.2 Learning algorithms

A complete specification of a learning algorithm entails the definition of a mapping

from an initial node representation to an embedding, together with an appropriate

loss function and a definition of what constitute positive and negative samples. In

this section, we summarize these details for some of the existing methods in the

literature.

2.2.1 DeepWalk

Early approaches that learned distributed representations of discrete entities were

developed for the task of language modeling, where given a sequence of words, the

next has to be predicted (Bengio et al., 2000). More general architectures were

proposed by Mikolov et al. (2013a) with the specific purpose of word representation

learning, so that words appearing in the same context are close in the embedding

space.

DeepWalk extends this idea to representation learning on graphs, by defining the

context of a node vi in a graph as a sequence of nodes that occur in random walk on

the graph that passes through vi:

Ci = {vi−w, . . . , vi−1, vi+1, . . . , vi+w}.

Embeddings of nodes are then trained with Stochastic Gradient Descent (SGD)

to minimize the negative log-probability of a node in the context:

− log p(vj|zi) ∀vj ∈ Ci. (2.1)

A shortcoming of modeling the probability in equation 2.1 arises when the number

of nodes in the graph grows, so that computing the probability for every node in

the graph becomes computationally expensive. This problem has been addressed

in language models with hierarchical softmax, which gives an approximation to the

probability over nodes in the graph that is faster to compute (Mnih & Hinton,
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2008); and with negative sampling, where the loss function is modified with a

similar objective that approximates the log-probability (Gutmann & Hyvärinen,

2012; Mikolov et al., 2013b). With negative sampling, for each node in the graph

we maximize the log-probability of its co-occurrence with a positive sample vp in a

random walk, and minimize it for a negative sample vn randomly sampled from a

prior distribution p(v) over all nodes in the graph. The loss function to minimize is

the following:

L = − log p(vp ∈ Ci|vi)− log (1− p(vn ∈ Ci|vi)) s.t. vn ∼ p(v). (2.2)

The probabilities in equation 2.2 can be seen as scores assigned to positive and

negative samples, given a node vi. A common scoring function consists of the inner

product of embeddings followed by a sigmoid (Grover & Leskovec, 2016), in which

case the resulting loss function per node in the graph is the following:

L = − log σ
(
z>i zp

)
− log σ

(
−z>i zn

)
. (2.3)

This loss function is therefore an efficient method to learn node embeddings, as

it does not require the calculation of a probability distribution over all nodes in the

graph. On the other hand, since every node is directly assigned an embedding that is

trained via the minimization of equation 2.3, DeepWalk does not take node features

into account, although it can be extended via matrix factorization to include them,

as shown by Yang et al. (2015b).

If we restrict the context of a node vi to random walks of length 1, and negative

samples are drawn from a conditional distribution p(v|vi) so that only nodes not in

the 1-hop neighborhood of vi can be selected, the loss function in equation 2.2 turns

into the negative log-probability of entries of the adjacency matrix A:

L = − log p(Aip = 1|zi, zp)− log p(Ain = 0|zi, zn). (2.4)

This special case can be seen as an approximate prediction of the adjacency

matrix, and is related to autoencoder approaches for graphs that seek to reconstruct

the graph structure from low-dimensional node representations.

2.2.2 Graph Autoencoders

Autoencoders have long been used to learn low-dimensional representations of

observations, so that they are informative enough to be used to reconstruct the

original observation (Hinton & Salakhutdinov, 2006). The process of mapping
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an observation to the low-dimensional space is carried out by the encoder, while

the reconstruction is done by the decoder. Usually, the encoder and decoder are

neural networks trained with SGD through a loss function that captures the error

in the reconstruction. This approach has been utilized in previous works on graph

representation learning where embeddings are used to reconstruct the neighborhood

of a node (Cao et al., 2016; Wang et al., 2016), or the adjacency matrix (Kipf &

Welling, 2016b; Tran, 2018).

An example architecture of a Graph Autoencoder (GAE) consists of an encoder

neural network fθ that maps node features to an embedding: zi = fθ(xi), and a

decoder that takes embeddings for a pair of nodes (vi, vj) and predicts a link between

them. Under the assumption that the probability of an entry in the adjacency

matrix is independent of the rest given the embeddings zi and zj , the corresponding

reconstruction loss of the adjacency matrix corresponds to the binary cross-entropy

loss for each of its entries:

L = − log p(A|Z)

= −
N∑
i=1

N∑
j=1

log p(Aij|zi, zj)

= −
N∑
i=1

N∑
j=1

Aij log p(Aij = 1|zi, zj) + (1− Aij) log p(Aij = 0|zi, zj), (2.5)

where Z is the matrix containing all node embeddings, and the probabilities can be

obtained via an inner product of embeddings, as in DeepWalk.

As suggested by Kipf & Welling (2016b), for graphs with a large number of nodes

and high sparsity, this loss can be modified by subsampling entries with Aij = 0.

Equivalently, for a node vi we can consider positive samples as any of its neighbors,

and negative samples as any node not connected to it, in which case the resulting

loss function is the same as the special case of DeepWalk in equation 2.4.

Learning node embeddings can also be cast as a problem of inference of a

latent variable, as proposed by Kipf & Welling (2016b) in the Variational Graph

Autoencoder (VGAE). In the VGAE, the encoder q parameterizes the posterior

distribution of the latent embeddings Z, and a prior distribution p(Z) is defined,

such as a standard Gaussian. The model is trained with the reparameterization trick

(Kingma & Welling, 2013) to minimize the negative variational lower bound:

L = −Eq(Z|X,A)[log p(A|Z)] + KL (q(Z|X,A)‖p(Z)) (2.6)

The loss function of the VGAE is similar to that of GAE by including a
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reconstruction error, with the addition of a regularization term that penalizes a

posterior that deviates from the prior. In a related work, Davidson et al. (2018)

note that the choice of a Gaussian prior and posterior might not be suitable for

graph-structured data, and instead proposes to use a hyperspherical latent space.

A distinguishing feature of GAE and its variational formulations in comparison

with DeepWalk, is the use of an encoder that incorporates node features. While for

DeepWalk only nodes observed during training are assigned an embedding, encoders

are flexible functions that can map features of unobserved nodes to an embedding,

which is also known as the inductive property.

2.2.3 Deep Graph Infomax

Unsupervised learning methods can also be devised by specifying a loss function that

operates on the embedding space, as opposed to the loss in the observation space that

DeepWalk and Graph Autoencoders use. This is the approach proposed by Veličković

et al. (2018b) in Deep Graph Infomax (DGI). The main purpose of this method

is to learn node embeddings that maximize the mutual information with a global

representation of the graph. This is achieved through local patch representations,

defined as a continuous vectors that aggregate features of a node and its neighbors.

Patch representations are obtained in DGI with a Graph Convolutional Network

(GCN) (Kipf & Welling, 2016a), which propagates node features across the graph and

acts as a node encoder that outputs a representation zi. A global graph summary is

obtained as follows:

s = σ

(
1

N

N∑
i=1

zi

)
(2.7)

where σ is the sigmoid function.

DGI uses a contrastive learning approach with a discriminator D(zi, s), which

models the probability that an embedding zi belongs to a node in the graph, or

to a node in a corrupted version of the graph, given the global summary s. A

corrupted graph can be obtained with a permutation of node features, or by adding

and removing edges in the graph. Maximization of the mutual information between

local and global representations is obtained by minimizing the following loss for each

node:

L = − logD(zi, s)− log(1−D(z̃i, s)) (2.8)

where z̃i is the embedding of node vi in a corrupted version of the graph.
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2.2.4 Graph2Gauss

All of the methods described so far consider the embedding of a node as a single

vector. Graph2Gauss (G2G) (Bojchevski & Günnemann, 2018) instead proposes

to represent nodes as Gaussian distributions, so that an embedding of a node vi

is given by a mean vector zµi, and a vector zσi for the diagonal of the covariance

matrix, which are obtained with an encoder neural network that takes as input node

features.

The method uses an energy-based loss that encourages the energy of positive

samples to be low, and high for negative samples. The energy of a pair of nodes

(vi, vj) measures how distant they are, and is computed with the KL divergence of

the Gaussian embedding distributions:

Eij = KL(N (zµi, diag(zσi))‖N (zµj, diag(zσj))). (2.9)

For a positive pair of nodes (vi, vj) and a negative pair (vi, vk), the loss to minimize

is the square-exponential loss (LeCun et al., 2006):

L = E2
ij + e−Eik (2.10)

G2G defines positive and negative samples through a ranked strategy, by obtaining

a list of nodes in the neighborhood of a node of interest, and sorting it by the distance

in the graph in ascending order. By taking consecutive pairs in the list as positive

and negative samples, nodes get more distant in the embedding space as the distance

increases in the graph.

2.3 Components for unsupervised learning

on graphs

The previous summary of methods reveals a pattern in the way they are devised,

that can be described as a series of components with a distinct role in the process

of learning representations. In this section we present a modular framework under

which existing algorithms can be described and extended, which we depict in figure

2.2 and describe next.

2.3.1 Sampling strategies

The first component for unsupervised learning on graphs involves selecting appropriate

positive and negative samples for training. Most approaches take into account
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Figure 2.2: Methods for unsupervised learning on graphs can be described by a

modular framework consisting of five components. On the left, the process starts

with the sampling strategy that selects positive and negative samples. Nodes are

embedded into a given representation by encoding node features X and the adjacency

matrix A, and node pairs are assigned scores that are used in the loss function to

optimize.

the structure of the graph to select these, so that connected nodes have similar

embeddings, whereas distant or disconnected nodes are also distant in the embedding

space.

DeepWalk uses random walks of fixed length to find positive samples, and random

nodes as negative examples. Properties of the random walk can be modified to obtain

embeddings that capture communities or local structural roles, as node2vec (Grover

& Leskovec, 2016), which introduces parameters that balance between walks that

remain close to a node, and walks that explore other neighborhoods.

In GAE, the reconstruction of the adjacency matrix motivates the use of first

order neighbors as positive samples, and non-neighbors as negative samples. G2G

proposes a similar sampling strategy, but ranks closer nodes higher than distant

nodes, and the size of the sampling neighborhood is a hyperparameter.

To maximize the local mutual information in DGI, the node embeddings of the

graph are considered as positive samples. After corrupting the graph, new node

embeddings are obtained and used as negative samples. Veličković et al. (2018b)

show experimentally that DGI is robust to corruption strategies, such as dropping or

adding edges from the graph or shuffling the rows of the feature matrix X, although

they observe that the latter yields better performance in node classification.
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2.3.2 Node encoders

A key problem in the application of machine learning to graphs is incorporating the

structure of the graph within a model. Related methods are based on choosing graph

statistics by hand (Bhagat et al., 2011b), or by designing suitable graph kernels to

capture similarity between nodes (Vishwanathan et al., 2010; Kriege et al., 2019).

An alternative is to learn an appropriate mapping from nodes or subgraphs, to

representations that are optimized to preserve the structure of the graph (Hamilton

et al., 2017). This is a more flexible approach, as the representations are learned

end-to-end from data, avoiding the need to manually select features.

Whether a node is assigned a vector of features, or a one-hot representation,

initial representations of nodes in a graph can potentially be very sparse and

high dimensional, on the order of the number of nodes or more. This motivates

the specification of a function that encodes these high dimensional vectors into

embeddings on a low dimensional space. The reduction in the dimension of the

representation space brings many advantages, such as decreasing sparsity, extracting

useful features for downstream tasks, and improving computational and sample

efficiency (Belkin & Niyogi, 2002; Bengio et al., 2013).

The simplest graph encoder is a lookup table (LUT) of embeddings E ∈ RN×D,

and produces a node embedding by matrix multiplication with a one-hot vector xi,

such that zi = Exi. This is the approach adopted by graph factorization algorithms

(Ahmed et al., 2013a), spectral clustering (Tang & Liu, 2011), and DeepWalk.

By its definition, the LUT encoder disregards any information provided by node

features and the structure of the graph. This has motivated the design of encoders

that leverage at least one of these aspects. Such encoders have an increased flexibility

compared to a LUT encoder, by including learnable parameters and nonlinearities,

as in a Multi-Layer Perceptron (MLP). This type of encoder is used by G2G, and is

defined with the following propagation rule:

H(l+1) = MLP(H(l)) = f
(
H(l)W(l+1)

)
(2.11)

where we define H(0) = X, W(l+1) is the matrix of weights, and f is a nonlinear

activation function. A node encoder is then formed by stacking L of these layers, so

that the activations in the last layer H(L) = Z form the node embeddings.

Other encoders further consider the graph structure, such as Graph Convolutional

Networks (GCN), as proposed by Kipf & Welling (2016a), with the following

propagation rule for layer l + 1:

H(l+1) = GCN(H(l),A) = f
(
D−

1
2 AD−

1
2 H(l)W(l+1)

)
(2.12)
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where D ∈ RN×N is the degree matrix, and the term D−
1
2 AD−

1
2 is known as the

normalized adjacency matrix Ã. In comparison with MLPs, GCNs exploit structural

information by introducing the adjacency matrix. In a regular, fully connected

neural network, the adjacency matrix is not present in the propagation rule, so each

feature vector in the rows of H(l+1) is only affected by the corresponding row of H(l),

dismissing any relationship between a node and its neighbors. By introducing the

adjacency matrix in the propagation rule, GCNs distribute feature information of a

node to its neighbors.

The GCN encoder has been considered in learning methods like Graph Autoencoders

and Deep Graph Infomax. Other variations of node encoders that can also be

considered in unsupervised learning methods, recognize the propagation rule of

GCNs as a special case of a message-passing network, as shown by Gilmer et al.

(2017), or include additional parameters to model complex interactions between nodes

with an attention mechanism (Bahdanau et al., 2015), as in the Graph Attention

Network (Veličković et al., 2018a).

The Simplified GCN (SGC), a variant recently proposed by Wu et al. (2019a),

argues that k-layer GCNs can be simplified by removing all nonlinearities and using

fewer parameters, while preserving the k-hop neighborhood aggregation via powers

of the normalized adjacency matrix:

H = SGC(H(l),A) =
(
D−

1
2 AD−

1
2

)k
XW = ÃXW (2.13)

2.3.3 Node representations

Node embeddings can be interpreted as continuous representations in a Euclidean

space, where a measure of similarity between two nodes can be obtained as the

distance between two embeddings in RD using the `2-norm, or based on the inner

product between them. This is the case for many algorithms where a node is mapped

deterministically to a single vector, such as DeepWalk, GAE, and DGI.

The VGAE model also shows that embeddings can be interpreted as latent

variables, sampled from a posterior distribution parameterized by the encoder. As

shown in the previous section, this method can assume a Gaussian or a Hyperspherical

latent space, and it also admits recent extensions to the VAE framework that add

more flexibility to the latent space, such as planar or radial normalizing flows (Rezende

& Mohamed, 2015), and Sylvester normalizing flows (van den Berg et al., 2018).

G2G shows that embeddings can alternatively define a Gaussian probability

distribution directly, so that a node is represented by a particular set of distribution
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parameters. For downstream tasks, however, usually only the mean vector is used as

the node embedding.

An additional extension in the direction of representations that diverts from

embeddings as single points, considers embedding nodes as discrete probability

distributions, or point clouds (Frogner et al., 2019). This representation has the

advantage of distributing the embedding of a node across different points in the

space, allowing for multiple modes that capture different aspects of a node in the

representation.

2.3.4 Scoring functions

During training, unsupervised methods make use of a scoring function that is used to

evaluate pairs of embeddings. This function can be designed to assign a high score

to pairs that belong together, and a low score otherwise.

The choice of a scoring function is closely related to the embedding representation.

For vector representations in a Euclidean space, the cosine of the angle between two

embeddings is proportional to their inner product:

cos θ =
z>i zj
‖zi‖‖zi‖

. (2.14)

Therefore, two nodes that are similar should be close in the embedding space with an

angle θ ≈ 0. This can be achieved by maximizing the inner product, which is used

as the scoring function in DeepWalk, GAE, and VGAE, in addition to the sigmoid

function to map the score to the interval (0, 1).

DGI, on the other hand, scores a pair consisting of a node embedding zi and a

global summary embedding s via a bilinear product followed by a sigmoid. For G2G,

the embedding representation motivates the use of the Kullback-Leibler divergence

as the scoring function.

Other embedding representations also allow for different scoring functions. A

scoring function for the point cloud representation can be obtained by measuring the

Wasserstein distance between the distributions defined by the point clouds, which

measures the cost of moving all the probability mass from one distribution to another,

given a distance function. The point cloud representation will be treated in detail in

the next chapter.
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2.3.5 Loss functions

Unsupervised methods based on the contrastive method are optimized to maximize a

score for positive samples, and minimize it for negative samples. Given a score S for

a positive sample, and S̃ for a negative sample, a suitable loss function to minimize

for each sample pair is the following:

L = − logS − log(1− S̃) (2.15)

This loss function can be seen as the binary cross-entropy loss for a model of the

probability of a certain event y, and is used in DeepWalk, GAE, and DGI. Through

negative sampling, DeepWalk uses this loss while modeling the probability that

a node appears in a random walk through a node of interest. GAE models the

probability of two nodes being linked, and DGI models the probability of whether a

certain node embedding is related to a global summary vector, or that it comes from

a corrupted version of the graph.

In the energy-based learning approach, the objective consists of minimizing the

energy E for positive samples, and maximizing the energy Ẽ for negative samples

(LeCun et al., 2006). In G2G, the KL divergence is used to measure the energy between

pairs of node representations. This energy is then used in a square exponential loss

that penalizes energies for negative samples with exponentially decreasing force:

L = E2 + e−Ẽ (2.16)

Other losses have been proposed in the literature (LeCun & Huang, 2005; LeCun

et al., 2006), and pose alternatives for experimentation in graph representation

learning (see figure 2.3). Examples include the hinge loss, defined as

L = max
(

0,m+ E − Ẽ
)
, (2.17)

The hinge loss penalizes differences between the energies of the positive and negative

pairs larger than −m (where m is a margin hyperparameter), and thus it does not

favor any absolute value for each energy term.

A second alternative is the square-square loss, defined as

L = E2 +
(

max(0,m− Ẽ)
)2
. (2.18)

When this loss is minimized, the energy of the positive samples is minimized, favoring

values of zero, and the energy of the negatives is encouraged to be equal to or larger

than the margin m.
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(d) Hinge

Figure 2.3: Loss functions for unsupervised learning. Some losses treat the scores

due to positive and negative samples separately (denoted here as L(E) and L(Ẽ),

respectively), while the hinge loss depends on the difference in the scores.

As shown by LeCun et al. (2006), the loss functions described in this section

guarantee that minimization will find values where the energy is low for positive

samples and high for negative samples. In the context of graph representation

learning, this is related to a precise definition of the scoring function, which can

vary across methods. In DeepWalk, GAE, and DGI the inner product is followed

by a sigmoid that yields a score in the unit interval, which is used in the binary

cross-entropy loss. Alternatively, we can use the hinge loss with the negative inner

product as the energy. For a positive pair of nodes (vi, vj) and a negative pair (vi, vk),

the loss becomes

L = max(0,m+ (−z>i zj)− (−z>i zk))

= max(0,m+ z>i zk − z>i zj) (2.19)

This loss penalizes the case where z>i zk > z>i zj −m, thus encouraging embeddings

where the inner product for negative samples is lower than the inner product for

positive samples by a margin of m, and it has been used in methods for graphs with
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multiple relations between nodes (Yang et al., 2015a).

An attempt to use the negative inner product in a loss such as the square-

exponential would not be as successful, as we obtain

L = (−z>i zj)
2 + ez

>
i zk (2.20)

Overall, this loss penalizes the magnitude of any inner product, which is not beneficial

for positive samples. On the other hand, it does so exponentially for the negative

samples, and quadratically for positive samples, a difference that could allow learning

useful embeddings. We can gain more insight by examining the gradient of equation

2.20 with respect to the model parameters θ:

∂L
∂θ

= −2z>i zj
∂(z>i zj)

∂θ
+ ez

>
i zk

∂(z>i zk)

∂θ
(2.21)

We note that in the first term the sign of the gradient could be reversed during

training, depending on the sign of the inner product, therefore the use of this loss

could lead to problems in convergence when using SGD. We can conclude that that

it is possible to exchange the loss function in methods for representation learning to

learn embeddings with certain favorable properties, as long as they are coupled with

an appropriate scoring function.

In many cases, minimizing the loss function can cause the norm of the embeddings

to grow without bound. This is the case when the inner product is used in the scoring

function. As the norm increases, the loss will decrease accordingly until overfitting

occurs. For this reason, it is often necessary to include regularization in methods

for graph representation learning. Techniques used in the literature include weight

decay (Yang et al., 2015a), the KL divergence as used in variational approaches like

VGAE, and early stopping, used in DGI and G2G. Even though early stopping does

not add an explicit term to the loss, it effectively reduces the parameter space to a

neighborhood around the initial value, which has a regularizing effect (Bishop, 1995;

Sjöberg & Ljung, 1995).

2.4 Conclusion

We have listed some of the existing methods in the literature for unsupervised graph

representation learning, and we have described them under a modular framework

where each component is flexible in terms of possible variations. In this view, existing

methods can be seen as a particular choice for each of the components, as we show

in table 2.1. We find that this choice is evaluated as a whole, while an assessment
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Table 2.1: Components of unsupervised learning methods on graphs in existing

algorithms: DeepWalk (Perozzi et al., 2014), GAE (Kipf & Welling, 2016b), S-VGAE

(Davidson et al., 2018), DGI (Veličković et al., 2018b), and G2G (Bojchevski &

Günnemann, 2018). vMF(z) corresponds to the von Mises Fisher distribution.

Method Encoder Representation Score Loss Sampling

DeepWalk LUT zi ∈ RD σ(z>i zj) − logS − log(1− S̃)
(+) random walk neighbors

(-) non-neighbors

GAE GCN zi ∈ RD σ(z>i zj) − logS − log(1− S̃)
(+) 1st order neighbors

(-) non-neighbors

S-VGAE GCN zi ∼ vMF(z) σ(z>i zj) − logS − log(1− S̃)
(+) 1st order neighbors

(-) non-neighbors

DGI GCN zi ∈ RD σ
(
zTi Ws

)
− logS − log(1− S̃)

(+) original graph

(-) corrupted graph

G2G MLP
zµi ∈ RD

zσi ∈ RD
KL(Ni‖Nj) S2 + exp(−S̃)

(+) n order neighbors

(-) n+ 1 order neighbors

of the effect of individual elements is often missing. These results thus motivate a

series of questions:

• Given an existing method, what is the effect of changes in its components?

• Can we devise novel methods by leveraging the framework and including related

results in the literature, such as the use of Wasserstein distances in scoring

functions?

• What are the experimental advantages and limitations of this variations in

downstream tasks like node classification and link prediction?

These questions will be addressed in the following chapters.
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Chapter 3

Graph Wasserstein Embeddings

The most common approach in methods for graph representation learning is to embed

each node in the graph as a single point in Euclidean space. This representation is

convenient, as it allows the use of simple scoring functions such as the inner product,

or the KL divergence, which has a closed form for distributions like the Gaussian.

However, this representation causes all the information captured by an embedding

to be concentrated in a specific region of the space, which prompts us to question

the effectiveness of such representation to capture aspects that occur naturally in

data, such as uncertainty and multimodal distributions.

A similar remark has been made in the related area of word representation

learning, where words can have multiple meanings, depending on the context, that

point embeddings can fail to learn. Li & Jurafsky (2015) propose to use a Chinese

Restaurant Process (Blei et al., 2003) to find word embeddings with multiple senses,

although they find that their approach can be easily matched by a single point

embedding with a comparable number of parameters. Other methods that capture

word meaning uncertainty have been proposed, by embedding words as Gaussian

distributions (Vilnis & McCallum, 2015), or using a VAE to find the posterior

distribution of a word embedding, given its context (Brazinskas et al., 2018). These

methods often result in increased performance, which motivates the application of

similar approaches for graph representation learning.

Among the methods that we have reviewed, G2G and VGAE provide a mechanism

towards embeddings that capture uncertainty, by representing nodes with the mean

and covariance of a Gaussian distribution. Ideally, learning the covariance allows to

capture uncertainty when representing a node, according to what is observed in the

data. Bojchevski & Günnemann (2018) show that in G2G, the learned covariance

is correlated with the class diversity of the neighborhood of a node: nodes with
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neighborhoods of different classes result in higher covariance, and vice versa. This is

a surprising result, since class information is not used during training. In spite of

these results, G2G and VGAE require a higher number of parameters in comparison

to methods like DeepWalk and GAE, and more importantly, they still makes use

of a single point (the mean of the distribution) for the tasks of link prediction and

node classification.

A new promising direction, introduced by Frogner et al. (2019), consists of learning

embeddings as discrete probability distributions, or point clouds, and measuring

the Wasserstein distance beween two node embeddings, which quantifies the cost of

moving all the probability mass from one distribution to the other, according to a

specified cost function.

Under this approach, a node is represented as a set of points scattered throughout

the space on locations learned from data, providing an increase in flexibility in

comparison with point embeddings. Furthermore, Frogner et al. highlight theoretical

results that enable the Wasserstein distance to preserve properties of the space being

embedded, such as the shortest path distance on a graph.

In the previous chapter we introduced a modular framework for representation

learning on graphs. In this chapter we propose a method that uses point clouds as

the representation component, and the Wasserstein distance in the scoring function

component of the framework. We introduce the theoretical and computational

background of the problem, and we present preliminary results on real-world networks.

3.1 Embedding nodes as distributions

We begin by considering discrete probability distributions, which can be defined as

a set of probability masses located in certain locations of a space. More formally,

let X = {x1, . . . , xn} be a subset of a domain space RS. We call X the support set,

which contains n locations to which a discrete probability distribution pX assigns

nonzero mass. Let a ∈ Rn be the probability vector containing the mass for each

xi ∈ X , such that
n∑
i=1

ai = 1. (3.1)

The distribution can then be defined as a sum of Dirac deltas located at the support

points:

pX =
N∑
i=1

aiδxi (3.2)
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We are interested in embedding nodes as distributions of the form 3.2. In order

to use this formulation in our modular framework for unsupervised representation

learning, we must provide a definition of similarity between node embeddings that can

be employed in the scoring component. Therefore, we need a measure of similarity

between a pair of discrete probability distributions.

Let pX be the distribution assigned to a node vx. Similarly, let Y = {y1, . . . , ym}
be the support of the distribution pY assigned to a node vy, and let b ∈ Rm be the

corresponding probability vector. In the special case where X = Y , a straightforward

way to measure the similarity of the pair (vx, vy) is the Kullback-Leibler divergence

of their associated distributions:

KL(pX‖pY ) =
n∑
i=1

ai log
ai
bi

(3.3)

As highlighted by Bojchevski & Günnemann (2018), this asymmetric divergence

can be suitable for directed graphs, otherwise we can use the symmetric Jensen-

Shannon divergence. However, the assumption of equal supports for both distributions

is limiting, as it requires the support points for all nodes to be in the exact same

locations.

3.1.1 The Wasserstein distance

We can define an alternative measure of similarity between distributions as follows:

let C ∈ Rn×m be a cost matrix, where the Cij entry contains the cost of moving a

unit of mass from location xi ∈ X to the location yi ∈ Y. The optimal transport

cost is the minimum cost of transporting the masses in the support X towards the

masses in Y .

This problem is central in the theory of optimal transport, and its early formulation,

known as the Monge problem (Monge, 1781), requires every point in X to be assigned

to exactly one point of Y, that is, probability masses cannot be split. This might

not be achievable when n ≥ m, and it is not possible when n < m.

The Kantorovich relaxation (Kantorovich, 2006) addresses this by formulating

the assignment problem through a permutation matrix P ∈ Rn×m, also known as

the coupling matrix, where the Pij entry contains the amount of mass at location xi

that is moved to the location yi. Note that this requires that the rows of P add to a,

and its columns to add to b. The optimal transport problem then consists of finding
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Figure 3.1: A solution of the optimal transport problem under the Kantorovich

relaxation, which consists of finding the assignment that minimizes the cost of

transporting the probability mass from one distribution (orange) to another (blue);

shown here for a pair of distributions with support points in R2. The strength of the

lines represents the fraction of the mass that is transported, with the darkest being

a fraction of 1.

the minimum transportation cost:

LC = min
P
〈C,P〉 = min

P

∑
ij

CijPij (3.4)

subject to P1m = a and P>1n = b, where 1n and 1m are column vectors of n and

m ones, respectively. An illustration of this problem is shown in figure 3.1.

The definition of the cost matrix is problem dependent, although in particular we

can associate it with a metric, such as the Euclidean distance. Let c be a function

defined on the domain space RS. c is a distance function or metric if it satisfies the

following conditions for all x, y, z ∈ RS:

1. Non-negativity: c(x, y) ≥ 0

2. Simmetry: c(x, y) = c(y, x)

3. Identity of indiscernibles: c(x, y) = 0⇔ x = y

4. Triangle inequality: c(x, z) ≤ c(x, y) + c(y, z)

If we use a metric c to calculate the pairwise costs, such that Cij = c(xi, yj)
p,

we call c the ground metric and the minimum transportation cost defines the p-

Wasserstein distance between the distributions pX and pY :

Wp(pX , pY ) = L
1/p
C (3.5)
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Given this definition, the p-Wasserstein distance is a metric on the set of discrete

probability distributions, as it satisfies the four conditions listed above (Villani, 2008),

hence giving rise to the Wasserstein space. In contrast with the KL divergence, the

Wasserstein distance does not constrain the distributions to have the same support.

This is therefore a suitable metric to measure the similarity of two nodes embedded

as discrete distributions.

The last issue to be addressed is the solution of the optimal transport problem:

how to find the coupling matrix P that minimizes the transportation cost? A well

known method in the optimal transport literature is the Hungarian algorithm (Kuhn,

1955). Its applicability for representation learning on graphs is limited, as it assumes

that the distributions are uniform and have the same number n of support points, and

it has complexity O(n3) (Jonker & Volgenant, 1987). Furthermore, the algorithm is

not differentiable with respect to the cost matrix, so it is not suitable for optimization

with SGD and backpropagation.

In the next section we describe a modification of the problem that allows to find

an iterative and differentiable algorithm that makes the computation of Wasserstein

distances more amenable to their use in deep learning.

3.1.2 Entropic regularization

We begin by defining the entropy of a matrix:

H(P) = −
∑
ij

Pij log Pij. (3.6)

A matrix with a low entropy will be sparser, with most of its non-zero values

concentrated in a few points. Conversely, a matrix with high entropy will be smoother,

with the maximum entropy achieved with a uniform distribution of values across its

elements. The optimal transport problem can be modified by including the entropy

of the coupling matrix in the objective:

L
(ε)
C = min

P
〈C,P〉 − εH(P)

subject to P1n = a

P>1m = b

(3.7)

where ε is a regularization coefficient. The entropic version of the problem has a

number of important properties. First, it is convex, so it has a unique minimum.

Second, its unique solution converges to the solution of the original formulation
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Figure 3.2: Solutions of the regularized optimal transport problem for different values

of ε. The associated permutation matrix is shown at the bottom, with brightness

depicting the magnitude of the entries. As ε goes to zero, the solution approaches

the solution of the unregularized problem. As it increases, the assignments become

more diffuse and the entropy of the permutation matrix increases.

as ε → 0 (Peyré & Cuturi, 2019), as we illustrate in figure 3.2. Lastly, it can be

solved using a sequence of differentiable operations that converge to the optimal

permutation matrix.

The unique solution to problem 3.7 is of the form P = diag(u)Kdiag(v), where K,

also known as the Gibbs kernel, has entries Kij = exp(−Cij/ε). From the constraints

on the rows and columns of the permutation matrix, we find that the following two

conditions must hold:

u� (Kv) = a and v � (K>u) = b (3.8)

where � is the element-wise product.

The Sinkhorn algorithm for solving the regularized optimal transport problem

(Yule, 1912; Sinkhorn, 1964; Cuturi, 2013) consists on initializing u and v with ones,

and iteratively updating them using the conditions 3.8:

u(k+1) =
a

Kv(k)
(3.9)

v(k+1) =
b

K>u(k+1)
(3.10)

where the divisions are element-wise. These sequential updates are also known as

the Sinkhorn iterations, which have been shown to converge in a finite number of

steps (Franklin & Lorenz, 1989).
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Algorithm 3.1 Wasserstein distance between distributions pX with support X =

{x1, . . . , xn} and probability vector a, and pY with support Y = {y1, . . . , yn} and

probability vector b.

Inputs:

pX , pY

Regularization coefficient ε > 0

metric c : X × Y → [0,∞)

Compute cost C: Cij = c(xi, yj)
p ∀xi ∈ X , yj ∈ Y

Compute kernel K: Kij = exp(−Cij)
u← 1n

v← 1m

while not converged do

u← a/Kv

v← b/K>u

end while

P← diag(u)Kdiag(v)

return 〈P,C〉1/p

An important aspect of the Sinkhorn iterations is the relation between the

coefficient ε and the number of iterations required for convergence. Assuming the

same number n of support points, for a fixed coefficient ε = 4 log(n)
τ

and τ > 0, the

iterations converge to a permutation matrix P such that

〈P,C〉 ≤ LC + τ

in O(n2 log(n)τ−3) iterations (Altschuler et al., 2017). This means that i) the

transportation cost that the Sinkhorn iterations yields approximates the unregularized

optimal transport cost, with an error of up to τ , and ii) the number of iterations

required to guarantee this is inversely proportional to the error τ in the approximation.

The Sinkhorn algorithm thus serves as a method to calculate an approximation

of the Wasserstein distance, which is also known as the Sinkhorn distance, and we

denote as W(ε)
p (pX , pY ). We outline it in algorithm 3.1.

We can see that the Sinkhorn algorithm consists of a sequence of linear, differentiable

operations, so we can use it as a module in a deep learning architecture that takes

as input a pair of supports and probability vectors, and outputs the Wasserstein

distance. This, together with the increased flexibility of Wasserstein spaces, has

motivated its applications to problems in generative modeling (Genevay et al., 2018;

Ambrogioni et al., 2018) and metric embedding (Frogner et al., 2019).
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In their work, Frogner et al. (2019) explore learning embeddings on Wasserstein

spaces of the kind we have discussed in this section. In particular, they propose to

use them to embed nodes in graphs, so that the geometry in the Wasserstein space

preserves the properties of the graph. Following this motivation, we explore the use

of such spaces in the scoring and representation components of the framework for

graph representation learning outlined in the previous chapter.

3.2 The point cloud representation

We will now consider two specific choices in the components of our framework for

graph representation learning:

• Representation: Given the output hL ∈ RD of the node encoder, we will

represent nodes as discrete, uniform probability distributions with n support

points in RS, such that n×S = D. Even though the probability vector a could

be learned as well, we choose to use a uniform distribution with ai = 1
n
, as

learning the weights has shown not to yield improved results (Frogner et al.,

2019; Kloeckner, 2012; Claici et al., 2018). This means that the output of the

node encoder is interpreted as the locations of the support points. We call this

the point cloud representation.

• Scoring: Similarly as in Graph2Gauss, where the scoring function uses

the KL divergence between the distributions, we can use the 1-Wasserstein

distance. Given a pair of nodes vx and vy embedded as point clouds pX and

pY , respectively, the scoring function is given in terms of W(ε)
1 (pX , pY ), which

is calculated with the Sinkhorn algorithm to enable end-to-end learning with

SGD. As a distance-based score, this function is compatible with generalized

margin losses (LeCun et al., 2006), which include the hinge, square-square, and

square-exponential losses. Minimizing these losses when using the Wasserstein

distance will therefore yield distributions that are close, in the optimal transport

sense, for positive samples, and distant for negative samples.

The point cloud representation offers an advantage with respect to point embeddings

due to its ability to represent multiple modes, without committing to parametric

distributions restricted by the tractability of computations (as is the case of the

Gaussian in the VAE, for example). These intuitive benefits have been supported

by formal results on related works that explore the representational capacity of

Wasserstein spaces.

26



We can make this notion precise by defining an embedding as a map φ : A → B
between two metric spaces (A, dA) and (B, dB), where dA and dB are metrics on A
and B, respectively. We also call B the target or embedding space. A space with

large representational capacity preserves distances of objects that are embedded into

it, which is measured as the distortion in the distance between two objects in the

embedding space, compared to the distance in the original space (Frogner et al.,

2019). More formally, for a pair (u, v) in the original space, and for L > 0 and C ≥ 1,

the distortion of the embedding is the smallest C such that the following holds:

LdA(u, v) ≤ dB(φ(u), φ(v)) ≤ CLdA(u, v) (3.11)

Previous work has shown that Wasserstein spaces can embed a wide variety of

spaces with low distortion. This includes `1 (the space of absolutely convergent

series) (Bourgain, 1986), and finite metric spaces on R3 (Andoni et al., 2018). Based

on these results, Frogner et al. (2019) propose to use Wasserstein spaces to embed

nodes in a graph with the shortest-path distance as the original metric, and they

show that low distortion can be achieved for synthetic and small networks. In the

next section we present preliminary results on the use of Wasserstein spaces to embed

nodes in real-world networks.

3.3 Preliminary results

In order to verify experimentally the distortion properties of Wasserstein embeddings,

we train embeddings that minimize the distortion of the shortest-path metric on a

graph. As node encoder we use a two-layer GCN with 128 output units. We use

these to parameterize the locations of the support points. Given a fixed number of

output units, we change the number of support points, which effectively changes the

dimension of the support space. In particular, we run experiments with 1 point in

R128, 2 in R64, and 8 in R16. For the ground metric we use the L2 distance. Note

that in the case of 1 point in R128, the Wasserstein distance in this case is equal to

the L2 distance between point embeddings.

For each node vx in the graph we randomly sample a node vy within its k-

neighborhood, where k is a hyperparameter that we set to 10. We then minimize

the distortion loss:
|W(ε)

1 (pX , pY )− dG(vx, vy)|
dG(vx, vy)

(3.12)

where dG(vx, vy) is the shortest-path distance between vx and vy. We calculate the

mean loss for all nodes and minimize it with Adam (Kingma & Ba, 2015), with a
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Figure 3.3: Mean distortion when embedding the shortest-path distance on the

Wasserstein space, with varying number of support points n. Results shown for Cora

(left) and Citeseer (right).

learning rate of 0.01 for 1000 epochs. We train the embeddings using the Cora and

Citeseer datasets (Sen et al., 2008), which correspond to citation networks where

nodes represent publications, and edges are present if a document cites another.

Cora and Citeseer have 2,708 and 3,327 nodes, respectively.

We show the loss curves for both graphs in figure 3.3. These curves confirm

the results on small networks shown by Frogner et al. (2019), and demonstrate the

feasibility of using Wasserstein spaces to embed nodes while preserving the graph

structure, such as shortest-path distances. We also observe the advantage of using

point clouds (n > 1), as opposed to point embeddings (n = 1), as the former achieves

lower embedding distortion, highlighting the potential of Wasserstein spaces to embed

other metric spaces on graphs.

It is interesting to note that even when the encoder outputs 128 units, Wasserstein

embeddings can be visualized in the plane without any dimensionality reduction

techniques, when the support space is R2. This allows us to evaluate the embeddings

qualitatively to verify their properties for unsupervised learning on graphs. With

this aim, we train embeddings for the Cora dataset using the same settings as before,

except for the sampling strategy, for which we use the first-neighbors sampling of

GAE. This strategy uses 1-hop neighborhoods as positive samples, and any other

non-neighbor nodes as negative samples. This should produce point clouds that are

close for linked nodes in the graph, and separated otherwise.

For visualization, we sample 100 nodes at random and we plot their support on

the plane. We then select 3 pairs, where for each pair the first support is drawn

with a cross, and the second with a circle. We visualize these pairs for positive and
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(a) Positive pairs (b) Negative pairs

Figure 3.4: Wasserstein embeddings for positive and negative samples. Pairs (pX , pY )

are shown with the same color, with the support of pX shown with crosses, and the

support of pY with circles. Gray circles show supports for other nodes in the graph.

In this example, nodes are embedded as discrete distributions in R2 with 4 support

points.

negative samples in figure 3.4. The visualization shows that point clouds for positive

pairs are effectively pushed closer, whereas point clouds are separated for negative

pairs. Hence we can see that Wasserstein embeddings are able to capture information

on the graph, which in this case corresponds to first neighborhood structure.

3.4 Conclusion

The prospect of higher flexibility of Wasserstein spaces, and theoretical and experimental

results on their capacity, have motivated us to introduce a representation and a scoring

function component for experimentation in our modular framework. Preliminary

results show that these spaces allow for low-distortion embeddings that preserve

information present in the structure of the graph, such as shortest paths and 1-hop

neighborhoods. We have yet to evaluate how this generalizes to downstream tasks,

such as node classification and link prediction. We will address this aspect in the

next chapter.
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Chapter 4

Experiments

The proposed modular framework motivated a series of questions regarding the effect

of changes in the components of existing methods, when the embeddings are used in

downstream tasks. This type of analysis is not present in related work, and as noted

by Shchur et al. (2018), the evaluation of machine learning models on graphs can

be negatively affected due to different training procedures, and the repeated use of

fixed splits and small datasets that give a biased estimate of generalization.

We address these issues by running experiments that test such changes, which

allows us to obtain insights on the properties of existing methods, and novel variants,

when used for link prediction and node classification on real-world networks. We then

evaluate the use of Wasserstein spaces for these tasks. Following the results of Shchur

et al. (2018), we propose a consistent and reproducible evaluation framework with

randomized splits, and uniform hyperparameter search and computational budgets

across different models.

The implementation of our modular framework is released as an open source

library for representation learning on graphs, together with the code to reproduce

our experiments1.

4.1 Datasets

We make use of standard datasets of different sizes, that have been used in the

literature to evaluate the performance of machine learning algorithms on graphs. The

first group of datasets is comprised by Cora, Citeseer (Sen et al., 2008), and Pubmed

(Namata et al., 2012). These are citation networks that represent documents as nodes

1https://github.com/dfdazac/graph-learn
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Table 4.1: Statistics for different datasets used for the experiments.

Dataset Classes Nodes Features Edges

Cora 7 2,708 1,433 5,278

Citeseer 6 3,327 3,703 4,552

Pubmed 3 19,717 500 44,324

Cora Full 67 18,703 8,710 62,421

Coauthor CS 15 18,333 6,805 81,894

Coauthor Physics 5 34,493 8,415 247,962

Amazon Computers 10 13,381 767 245,778

Amazon Photo 8 7,487 745 119,043
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Figure 4.1: Properties of the datasets used in the experiments, showing (a) average

node degree, and (b) degree and attribute assortativity.

and citations between them as edges. Each node has an associated feature vector

that corresponds to a bag-of-words representation of the contents of a document,

and a label denoting a topic. We also consider Cora-Full, an extension of the Cora

dataset.

Furthermore, we consider recently proposed datasets for the evaluation of models

that operate on graphs (Shchur et al., 2018), which contain bigger networks than the

ones described before. In the Amazon Computers and Amazon Photo graphs, nodes

represent goods and edges link products bought together. Each node is assigned

a feature vector with bag-of-words reviews and a label showing a category. The

Coauthor CS and Coauthor Physics datasets are co-authorship networks, where each

node represents an author, and authors are linked if they have co-authored a paper.
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In this case features correspond to publication keywords, and labels represent a field

of study.

Dataset statistics can be found in table 4.1. We additionally show plots that

illustrate properties of the different graphs. In figure 4.1a we show the average node

degree, which is computed by counting the total number of edges connected to a

node, and dividing by the total number of nodes. This diagram shows that the

datasets cover a wide range of node degrees, which is of interest to evaluate the

performance of our methods under different conditions.

We can obtain more information about the properties of the graphs by using

the node assortativity, which measures the average correlation between connected

nodes acording to a certain feature (Newman, 2003). We show its values for the

datasets in figure 4.1b. The degree assortativity measures the correlation according

to node degree, so that if the correlation is high, nodes with a large number of edges

are interconnected. We note that even though Cora, Citeseer, and Pubmed are all

citation networks, Citeseer exhibits positive degree assortativity, suggesting that

it contains particular characteristics that differentiate it from the rest. Newman

(2003) shows empirically that technological networks (e.g. documents in the World

Wide Web, or software dependencies) tend to have negative degree assortativity,

whereas social networks have positive degree assortativity. This is also the case for

the Coauthor networks, which represent authors and academic interactions among

them.

The attribute assortativity measures the correlation in terms of classes. When

it is positive, nodes of the same class are highly interconnected, otherwise nodes

tend to connect to nodes of different classes. This corresponds to the concept of

homophily described in chapter 2. From figure 4.1b, we observe that all datasets

have positive attribute assortativity, which shows that all the networks conform to

the homophily hypothesis.

4.2 Evaluation

In order to asses the quality of the learned embeddings, we evaluate their use in

two tasks that are common in the literature of graph representation learning: link

prediction and node classification. In the link prediction task we are interested in

predicting whether there is an edge between a pair of nodes, given their embeddings.

The node classification task uses the embedding of a node to predict a label. This

is achieved by training a simple classifier, such as a logistic regression model, that
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takes as input the embedding.

To train embeddings for each of these tasks, the data preparation is different as

we outline next.

Link prediction Since some encoders, such as GCN and SGC, make use of the

graph structure to encode a node, it is important to guarantee that the embeddings

are trained with a disjoint list of edges for the training and test splits. To achieve

this, we randomly sample a number of negative edges equal to the number of edges

in the graph. We then select 85%, 5%, and 10% from these lists to create training,

validation, and test splits, respectively.

For a given unsupervised learning method, we use its scoring component to obtain

a score for pairs of embeddings. Given a list of predicted scores and the ground truth

(i.e. an edge exists or not), the precision-recall curve consists of points (Pi, Ri) with

the precision Pi and recall Ri obtained at different values of a threshold, which is

applied to the score to predict an edge. To calculate a summary of this curve, we

report the average precision:

AP =
∑
n

(Rn −Rn−1)Pn, (4.1)

where n is the number of threshold values used to construct the curve.

Node classification For this task we train the models without removing any

edges of the graph, except for GAE, which is trained in the same way as for the link

prediction task. However, unlike in the link prediction case, we randomly sample

negative samples at each epoch to train the GAE.

We employ the learned node embeddings to train a logistic regression classifier

with 3-fold stratified cross-validation using 10% of the labeled nodes, for a maximum

of 300 iterations. We report the accuracy on the remaining 90% of the data.

4.3 Experiments

In all our experiments, the embedding dimension is 128. When using MLP and

GCN encoders, we use two layers with 256 and 128 units, respectively. Given its

formulation, models with the SGC encoder only have a single layer with 128 output

units. For the nonlinearities we use the ReLU activation function (He et al., 2015).

We train the models for 200 epochs, using the Adam optimizer (Kingma & Ba, 2015).

We select the best learning rate based on the performance on the validation set.
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As observed by Shchur et al. (2018), results of representation learning methods on

graphs can vary significantly depending on specific splits for training and evaluation.

To improve our estimates on performance we run every experiment 20 times, and

report the mean and standard deviation in the results. We further guarantee that all

models and baselines are trained on the same random splits. Our implementation uses

PyTorch (Paszke et al., 2017) and the PyTorch Geometric library (Fey & Lenssen,

2019).

4.3.1 Comparative study

We start by comparing the existing methods that we have reviewed: DeepWalk, DGI,

GAE, and G2G. We also consider the use of raw node features, which omits the

encoder component. When using raw features for link prediction, we use the inner

product as the score.

To evaluate the effect of changes in the components of a method, we experiment

with the following variations:

• Node encoder: DGI and GAE are originally formulated with a GCN encoder,

and we explore the use of an MLP and an SGC model in its place. For G2G

we consider the original MLP encoder, and a GCN variant.

• Representation: G2G represents nodes as Gaussian distributions. Compared

to DGI and GAE, this model requires twice the number of parameters in the

last layer of the encoder, to account for the mean and variance. We experiment

with a variant that discards the variance, and treats the mean as a point

embedding. Instead of the KL divergence in the scoring component, we use

the L2 distance. We call this variant Graph2Vec (G2V).

Since GAE and G2G contrast direct neighbors against non-neighbors in the

loss function and sampling strategies, they are better equipped for the task of link

prediction than DGI. To explore how the performance of DGI can be improved in the

task of link prediction, we train an edge predictor that uses the learned embeddings

(which are not fine-tuned), so that the score for a pair is given by the bilinear form

z>i Wzj. We denote this model as DGI-B.

The results of the experiments are shown in table 4.2 for link prediction, and

table 4.3 for node classification. We discuss these results next.
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Raw features This method does not involve any learning, so in general we expect

its performance to be much worse compared to representation learning methods. We

observe this for most of the cases, except for the Coauthor datasets. This can be

explained by noting that node features in these networks are keywords, which are

usually concise and explanatory, unlike the bag-of-words features used in the rest of

the networks, which are formed by fixing a vocabulary depending on word frequency.

In this sense, it is more likely for two connected nodes in the Coauthor datasets to

have very similar keywords, so that for link prediction the value of the inner product

for connected nodes will be higher on average than for other datasets. This effect is

increased by the high homophily of the Coauthor datasets, which are among the top

3 networks with the highest degree and attribute assortativity, as shown in figure

4.1b. This behavior is also noticeable in node classification.

DeepWalk For this method we observe consistently good performance across

datasets compared to using raw features. On link prediction, we can see a notorious

decrease in performance on the Amazon datasets, which contain networks with the

highest average node degree. This suggests that for the link prediction task, the

random walk used by DeepWalk might not be sufficient to traverse sufficiently diverse

neighborhoods for nodes with high degree. The performance on node classification is

more robust against the average node degree.

DGI Using an MLP encoder results in worse performance, which is expected

because the mutual information maximization on which DGI is based leverages patch

representations. These representations are lost when using an MLP encoder since it

only uses node features, and discards the structure of the graph. As we hypothesized,

the original formulation of DGI, which uses a GCN encoder, has low link prediction

performance.

We found that two different variants result in improved performance: training

a link prediction model (GCN-DGI-B), and using an SGC encoder. In spite of

the improvements that an additional link prediction model brings, it requires more

parameters and resources for additional training. Using an SGC encoder, on the

other hand, uses less parameters and can result in competitive performance for some

datasets. We observed that SGC allows to obtain higher scores in the training set

compared to the GCN, while also generalizing well to the test set, which we attribute

to the lower number of parameters of the SGC. However, for networks with high

average node degree, as in the Amazon datasets, the use of multiple layers and

nonlinearities in the GCN yields better performance than the SGC.
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Table 4.2: Link prediction results (average precision on the test set, in percent).

For DGI, GAE, and G2G we highlight in bold the highest score for variants of

the method, and the highest across all methods is underlined. We do not consider

GCN-DGI-B in this comparison as it requires training an additional link prediction

model.

Method Cora Citeseer Pubmed
Cora

Full

Coauthor

CS

Coauthor

Physics

Amazon

Computer

Amazon

Photo

Raw features 76.8 ± 1.2 88.2 ± 0.9 89.6 ± 0.2 89.9 ± 0.2 92.3 ± 0.2 93.3 ± 0.1 67.4 ± 0.3 66.8 ± 0.5

DeepWalk 92.0 ± 0.6 91.3 ± 0.5 91.3 ± 0.3 96.4 ± 0.1 95.7 ± 0.2 96.1 ± 0.1 85.9 ± 0.1 88.9 ± 0.2

MLP-DGI 62.3 ± 2.2 69.1 ± 2.7 75.4 ± 0.9 66.8 ± 0.8 79.9 ± 0.8 80.9 ± 0.8 66.8 ± 0.5 66.0 ± 0.6

GCN-DGI 88.5 ± 1.2 91.7 ± 1.2 93.2 ± 0.4 89.5 ± 0.4 87.4 ± 1.3 86.7 ± 0.9 83.2 ± 1.1 79.0 ± 2.0

SGC-DGI 92.4 ± 0.7 92.4 ± 1.1 96.2 ± 0.3 96.5 ± 0.2 87.7 ± 2.3 92.9 ± 0.5 81.8 ± 0.4 76.6 ± 0.7

GCN-DGI-B 93.2 ± 0.8 93.9 ± 0.7 92.8 ± 1.0 95.8 ± 0.4 94.1 ± 1.1 96.1 ± 0.5 93.4 ± 2.0 95.0 ± 1.0

MLP-GAE 79.9 ± 1.5 83.1 ± 1.5 87.5 ± 0.6 83.7 ± 0.7 94.1 ± 0.2 94.3 ± 0.1 92.2 ± 0.2 94.2 ± 0.2

GCN-GAE 91.9 ± 0.8 92.9 ± 0.9 94.9 ± 0.2 95.4 ± 0.2 96.2 ± 0.2 97.0 ± 0.1 95.8 ± 0.2 96.6 ± 0.1

SGC-GAE 93.1 ± 0.8 94.6 ± 0.8 96.0 ± 0.4 96.5 ± 0.2 96.7 ± 0.1 97.2 ± 0.1 96.1 ± 0.2 94.7 ± 0.2

MLP-G2G 92.7 ± 0.8 94.3 ± 0.7 92.8 ± 0.3 97.7 ± 0.2 63.2 ± 0.6 71.7 ± 0.7 63.6 ± 0.3 63.6 ± 0.5

MLP-G2V 92.3 ± 0.8 93.9 ± 0.8 92.9 ± 0.3 97.8 ± 0.1 65.7 ± 0.4 71.5 ± 0.4 63.7 ± 0.4 63.7 ± 0.5

GCN-G2G 92.5 ± 0.9 92.6 ± 0.8 93.7 ± 0.4 97.5 ± 0.2 96.6 ± 0.1 97.2 ± 0.1 81.7 ± 4.9 90.2 ± 1.1

GCN-G2V 92.7 ± 0.8 92.5 ± 0.9 94.0 ± 0.4 97.7 ± 0.2 96.6 ± 0.1 97.2 ± 0.1 75.3 ± 2.9 86.3 ± 1.9

On node classification, the SGC instead resulted in overfitting, that is, while

it preserved the high performance in the training set that was observed for link

prediction, the performance on the test set is lower. With the exception of the

Amazon datasets, the GCN presents better generalization properties for this task.

GAE For link prediction, this method resulted in superior performance compared to

the rest of the methods. This is expected, since GAE is based on the reconstruction of

the adjacency matrix. The performance of the original model with the GCN encoder

is significantly improved when using an SGC in its place, except in the Amazon

Photo dataset. GAE with an SGC encoder also results in improved performance

on node classification in most of the cases. A notorious exception occurs with the

Coauthor datasets where the MLP encoder, often yielding poor results in other

datasets, gives the best performance. Similarly as in the analysis with raw features,

the properties of node features for these networks seem to be sufficient to discard

the graph structure in the encoder. It is important to note that even when using an

MLP encoder, GAE still induces the structure of the graph through the sampling

strategy and loss function.
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Table 4.3: Node classification results (accuracy in percent). For DGI, GAE and G2G

we highlight in bold the highest score for variants of the method, and the highest

across all methods is underlined.

Method Cora Citeseer Pubmed
Cora

Full

Coauthor

CS

Coauthor

Physics

Amazon

Computer

Amazon

Photo

Raw features 64.0 ± 1.1 65.9 ± 0.6 84.4 ± 0.4 53.5 ± 0.4 92.3 ± 0.3 94.9 ± 0.1 80.4 ± 0.7 87.8 ± 0.5

DeepWalk 76.7 ± 1.4 53.9 ± 1.4 80.1 ± 0.3 59.6 ± 0.3 86.9 ± 0.2 92.7 ± 0.1 87.4 ± 0.3 91.0 ± 0.4

MLP-DGI 41.1 ± 2.4 38.5 ± 2.0 70.4 ± 0.9 17.1 ± 0.6 85.1 ± 1.0 91.1 ± 0.6 59.5 ± 1.4 61.6 ± 1.4

GCN-DGI 82.8 ± 0.9 70.5 ± 0.9 84.6 ± 0.3 62.8 ± 0.4 91.5 ± 0.2 95.1 ± 0.1 88.4 ± 0.5 92.7 ± 0.3

SGC-DGI 76.3 ± 1.3 63.7 ± 1.0 82.7 ± 0.6 56.8 ± 0.4 91.1 ± 0.2 94.5 ± 0.2 88.5 ± 0.3 93.1 ± 0.3

MLP-GAE 73.4 ± 1.2 68.1 ± 0.8 79.3 ± 0.5 41.4 ± 0.9 93.2 ± 0.2 95.3 ± 0.1 83.0 ± 0.6 92.0 ± 0.4

GCN-GAE 81.7 ± 1.2 70.5 ± 0.8 83.1 ± 0.4 59.4 ± 0.6 91.6 ± 0.2 94.9 ± 0.1 87.9 ± 0.5 92.7 ± 0.6

SGC-GAE 82.3 ± 0.9 71.4 ± 0.7 82.0 ± 0.5 62.9 ± 0.4 91.7 ± 0.2 95.0 ± 0.1 88.0 ± 0.5 93.1 ± 0.4

MLP-G2G 79.7 ± 1.1 68.7 ± 0.9 84.3 ± 0.3 57.8 ± 0.3 69.4 ± 0.5 87.8 ± 0.1 49.1 ± 0.5 52.9 ± 0.7

MLP-G2V 78.7 ± 1.4 68.1 ± 0.7 84.4 ± 0.3 57.9 ± 0.4 64.0 ± 0.5 85.0 ± 0.2 48.1 ± 0.6 51.7 ± 0.9

GCN-G2G 79.8 ± 1.1 69.0 ± 0.7 83.8 ± 0.3 62.0 ± 0.4 91.0 ± 0.2 94.4 ± 0.1 87.8 ± 0.2 92.0 ± 0.3

GCN-G2V 79.2 ± 1.0 69.0 ± 0.8 83.9 ± 0.3 61.9 ± 0.6 90.9 ± 0.2 94.3 ± 0.1 87.7 ± 0.5 92.0 ± 0.4

G2G In both tasks, simplifying the node representation from Gaussian distributions

measured with the KL divergence (G2G), to Euclidean embeddings measured with

the L2 norm (G2V), resulted in almost identical performance at a lower complexity,

suggesting that the additional complexity of G2G is not required, and its strength

instead lies in its loss function and sampling strategy. The initial formulation with

an MLP encoder is competitive for small to medium sized graphs. The GCN encoder

shows a similar behavior, but for larger graphs it vastly outperforms the MLP

encoder, making it a reasonable default to learn embeddings with G2G, specially in

large graphs where the node classification task seems to benefit from neighborhood

aggregation.

Our experiments show that variants of existing methods often exhibit significantly

improved performance, and graph properties can have an important effect depending

on the method of choice. As observed in G2G, we find that certain modeling

choices made in previous works are less important than previously believed, and that

other optimization-related modeling choices are sometimes responsible for improved

performance. We have thus shown that the proposed modular framework can be

of practical use for devising new methods for unsupervised learning on graphs, and

highlighting strengths and weaknesses of existing approaches and possible variations.

In the previous experiments we explored the effect of changes in the encoder

and representation components. Instead of conditioning additional experiments on
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Table 4.4: Values used for each component in the hyperparameter study.

Component Values

Encoder MLP, GCN, SGC

Representation Euclidean, Gaussian

Scoring Inner product, KL divergence, Euclidean distance

Loss Binary cross-entropy, square-square, square-exponential, hinge

Sampling First-neighbors, ranked, graph corruption

existing methods, we can evaluate new variants by exploring the space of possible

combinations of components.

4.3.2 Hyperparameter study

Our modular framework for graph representation learning poses a natural question:

given a graph, what is the best combination of components in terms of performance on

link prediction and node classification? So far in our work we have identified a series

of guidelines to couple components in a principled way, that result in embeddings

with good predictive performance. These include an appropriate correspondence

between scoring and loss functions, and the use of the SGC encoder due to its

simplicity and performance in comparison with the MLP and GCN encoders.

Since the effect of components like scoring and loss functions can be more

subtle and data-dependent, and it can also vary depending on the task on which

the embeddings are evaluated, we propose to leverage our framework to carry out

hyperparameter search across components, which allows us to evaluate the combined

effect of multiple configurations.

Using the same training settings as in the previous experiments, we perform

hyperparameter search separately for link prediction and node classification. The set

of values for each component is shown in table 4.4, which we use to generate a grid

of hyperparameters that amounts to a total of 192 configurations. Some choices in

the components are constrained, e.g. the inner product score can only be used if the

representation is Euclidean.

We start by running the experiments using the Cora, Citeseer, and Pubmed

datasets. In figure 4.2 we show the performance on link prediction and node

classification in Cora and Citeseer. Following our previous remarks, our experiments

demonstrate how a particular choice of components can result in drastic differences

in performance.
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Figure 4.2: Results of the hyperparameter study for Cora and Citeseer, in link

prediction and node classification. Each line represents a particular configuration of

components. We use different colors for configurations based on an inner product

(IP) and a distance (Dist) score. For node classification we do model selection via

cross-validation, and we use the test set only to report final performance.

We note a distinction between configurations that use either the inner product or

a measure of distance in their scoring functions. As highlighted in figure 4.2, the

inner product score is more unstable with respect to choices of other components,

namely the encoder and the loss function. The worse models use an MLP encoder

and employ the square-square or square-exponential loss. This follows our analysis

in chapter 2 on the compatibility between scoring and loss functions, and the lower

performance of the MLP on graphs.
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Table 4.5: Results on the test set for the best variants, and the best method obtained

via hyperparameter search.

(a) Link prediction (average precision).

Method Cora Citeseer Pubmed
Cora

Full

Coauthor

CS

Coauthor

Physics

Amazon

Computer

Amazon

Photo

Raw features 76.8 ± 1.2 88.2 ± 0.9 89.6 ± 0.2 89.9 ± 0.2 92.3 ± 0.2 93.3 ± 0.1 67.4 ± 0.3 66.8 ± 0.5

DeepWalk 92.0 ± 0.6 91.3 ± 0.5 91.3 ± 0.3 96.4 ± 0.1 95.7 ± 0.2 96.1 ± 0.1 85.9 ± 0.1 88.9 ± 0.2

DGI 92.4 ± 0.7 92.4 ± 1.1 96.2 ± 0.3 96.5 ± 0.2 87.7 ± 2.3 92.9 ± 0.5 83.2 ± 1.1 79.0 ± 2.0

GAE 93.1 ± 0.8 94.6 ± 0.8 96.0 ± 0.4 96.5 ± 0.2 96.7 ± 0.1 97.2 ± 0.1 96.1 ± 0.2 96.6 ± 0.1

G2G 92.7 ± 0.8 94.3 ± 0.7 94.0 ± 0.4 97.8 ± 0.1 96.6 ± 0.1 97.2 ± 0.1 81.7 ± 4.9 90.2 ± 1.1

Best method 95.4 ± 0.7 96.7 ± 0.6 97.3 ± 0.2 98.5 ± 0.2 98.0 ± 0.1 98.0 ± 0.1 96.9 ± 0.1 97.2 ± 0.1

(b) Node classification (accuracy).

Method Cora Citeseer Pubmed
Cora

Full

Coauthor

CS

Coauthor

Physics

Amazon

Computer

Amazon

Photo

Raw features 64.0 ± 1.1 65.9 ± 0.6 84.4 ± 0.4 53.5 ± 0.4 92.3 ± 0.3 94.9 ± 0.1 80.4 ± 0.7 87.8 ± 0.5

DeepWalk 76.7 ± 1.4 53.9 ± 1.4 80.1 ± 0.3 59.6 ± 0.3 86.9 ± 0.2 92.7 ± 0.1 87.4 ± 0.3 91.0 ± 0.4

DGI 82.8 ± 0.9 70.5 ± 0.9 84.6 ± 0.3 62.8 ± 0.4 91.5 ± 0.2 95.1 ± 0.1 88.5 ± 0.3 93.1 ± 0.3

GAE 82.3 ± 0.9 71.4 ± 0.7 83.1 ± 0.4 62.9 ± 0.4 93.2 ± 0.2 95.3 ± 0.1 88.0 ± 0.5 93.1 ± 0.4

G2G 79.8 ± 1.1 69.0 ± 0.7 84.4 ± 0.3 62.0 ± 0.4 91.0 ± 0.2 94.4 ± 0.1 87.8 ± 0.2 92.0 ± 0.3

Best method 84.0 ± 0.8 72.1 ± 0.5 85.3 ± 0.2 65.2 ± 0.3 92.6 ± 0.3 94.2 ± 0.3 89.0 ± 0.4 93.4 ± 0.4

For link prediction, distance-based methods often result in very high training

performance that does not generalize well to the test set, showing a sign of overfitting.

Methods based on the inner-product score (aside from pathological cases where

the score does not match with the loss function appropriately) yield slightly lower

training performance but better generalization.

In the case of node classification, methods based on the inner product score

yield better training and test performance in Pubmed (not shown in figure 4.2), and

Cora. In Citeseer, distance-based methods exhibit better generalization performance.

We note that Citeseer differs from Cora and Pubmed in that it has positive degree

assortativity, although there is no formal justification for this not to be more than a

correlation, and other graph statistics might explain this result.

Having observed the results of multiple methods, we select the best combination

and proceed to apply it to the rest of the datasets. We find that it continues to

outperform other methods in link prediction on all datasets, and in node classification

on all but one dataset. We show the results in tables 4.5a and 4.5b, compared against

the best variants of existing methods that we found in the previous section.

Our findings demonstrate the potential of the modular framework to devise new

methods for graph representation learning. For the networks we have studied and

the tasks of link prediction and node classification, the exhaustive search across
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components allows us to identify a very strong method for link prediction, which

outperformed all other methods we have studied thus far. The method uses an SGC

encoder, the inner product as a score, the hinge loss, and the first-neighbor sampling

strategy of GAE. Its superior performance also generalizes to node classification,

with the exception of Citeseer, where the best method instead uses an L2 distance

score (while the rest of the components is unchanged from the best method in link

prediction).

We can shed light on the best performing method by examining its architecture.

For a node embedding zi and positive and negative samples zj, zk, the method

minimizes the hinge loss with the inner product score:

L = max(0, 1− z>i zj + z>i zk) (4.2)

This loss attains a global minimum when z>i zj = Aij = 1 and z>i zk = Aik = 0, or

equivalently, when ZZ> = A. Given an SGC encoder Z = SGC(X,A) (defined in

equation 2.13), the minimum is therefore achieved for a weight matrix W such that

A = ZZ>

= SGC(X,A)SGC(X,A)>

= (ÃkXW)(ÃkXW)>

= ÃkXWW>X>Ãk (4.3)

This result shows that method found via hyperparameter search is a linear model,

which describes a factorization of the adjacency matrix through feature propagation

across k-hop neighborhoods. Matrix factorization methods have been used in related

works to obtain node embeddings (Ahmed et al., 2013b), and in particular some

approaches consider higher order neighborhoods that are captured by powers of the

adjacency matrix (Cao et al., 2015; Ou et al., 2016).

The feature propagation performed by the best variant can be seen as low-pass

filtering of node features. Previous works have shown that this operation is sufficient

to obtain sufficient predictive performance in the datasets we have used, by removing

high frequency noise in node features (Wu et al., 2019a; Maehara, 2019), which

explains the superior performance of this method.

A second interpretation stems from equation 4.3, where we can see that the

model recovers the adjacency matrix by starting from its normalized version Ã to

perform feature propagation, from which it obtains the embeddings by reducing

the dimensionality with the weight matrix. The process is then reversed with the

tranpose of the weight matrix. This can be seen as a Linear, Symmetric Graph
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Table 4.6: Performance on downstream tasks of embeddings obtained with LSGAE

and PCA.

(a) Link prediction (average precision).

Method Cora Citeseer Pubmed

LSGAE 95.4 ± 0.7 96.7 ± 0.6 97.3 ± 0.2

PCA 92.0 ± 0.9 94.8 ± 0.7 97.1 ± 0.1

(b) Node classification (accuracy).

Method Cora Citeseer Pubmed

LSGAE 84.0 ± 0.8 72.1 ± 0.5 85.3 ± 0.2

PCA 83.6 ± 0.8 73.0 ± 0.6 85.8 ± 0.3

Autoencoder (LSGA). It has been shown that linear autoencoders are closely related

to Principal Components Analysis (PCA), as they learn the principal subspace of the

data (Bourlard & Kamp, 1988; Baldi & Hornik, 1989). From this we can conclude

that LSGAE works by approximating the principal components of node features

smoothed across k-hop neighborhoods, which results in strong predictors for link

prediction and node classification.

We examine the experimental relationship between LSGAE and PCA in both

tasks by running experiments on Cora, Citeseer, and Pubmed. In the case of PCA,

we obtain embeddings by applying the algorithm to the matrix of filtered features

ÃX to reduce the dimension down to 128. The results are shown in table 4.6, where

we observe similar results for these methods, especially in node classification.

4.3.3 Wasserstein embeddings

We now turn our attention to the use of Wasserstein spaces to embed nodes in a

graph, as motivated in the previous chapter. We defined the representation and

scoring components, and we experimented with multiple combinations of encoders,

loss functions and sampling strategies, using the same values listed in table 4.4, as for

the hyperparameter study. We used 128 units for the embeddings, as in the previous

experiments. These were used to represent the locations of the support points, in

spaces of varying dimension. We run experiments with 1, 4, 8, 16, and 32 support

points.

The results show that the MLP encoder yields the best performance for link

prediction. The GCN and SGC encoders produce similar results on the training set,

but their generalization is lower, as we show in figure 4.3 for Cora. We observed

similar results on the rest of the datasets.

We observed that the loss functions that result in better performance are those

that contain an explicit margin hyperparameter, such as the hinge loss and the

square-square loss, for which we used a fixed margin of 1. These losses resulted in
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Figure 4.3: Link prediction performance of Wasserstein embeddings on the training

and test sets, when using different encoders: MLP (left), GCN (center), and SGC

(right). The dashed line shows the highest value obtained in the test set. The MLP

encoder shows better generalization than encoders that use the structure of the

graph.

Table 4.7: Average precision in percent on the link prediction task using Wasserstein

embeddings. The results are obtained by using 128 real numbers to represent the

locations of a varying number of support points.

(a) Link prediction (average precision).

# points Cora Citeseer Pubmed

1 93.3 95.8 96.0

4 93.0 95.4 95.8

8 93.1 95.2 95.6

LSGAE 95.4 96.7 97.3

(b) Node classification (accuracy).

# points Cora Citeseer Pubmed

1 79.0 67.1 84.6

4 79.7 70.2 82.5

8 77.6 69.8 82.6

LSGAE 84.0 72.1 85.3

a better separation of scores between positive and negative samples, compared to

the square-exponential, which is also a generalized margin loss that does not have

an explicit margin hyperparameter. The use of binary cross-entropy loss yields the

lowest performance among all loss functions, which indicates that energy-based losses

are better suited when using a score based on a distance.

We show the effect of the number of support points for the link prediction task in

table 4.7a. We observe that values higher than 1 do not bring significant improvements

in performance, while increasing the computational cost of the procedure. When

using one point in the support, the distance essentially reduces to the Euclidean

distance, and the representation is not different from that used by other methods,

such as GAE and DGI. We also note that this method is also outperformed by

LSGAE.

When using Wasserstein embeddings for node classification, we note that using a
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logistic regression classifier (as in the previous experiments for other methods) would

induce a dependency on the order in which the locations of the support points are

passed to the classifier. A more suitable architecture is invariant to permutations

of the support points, which has been proposed in the literature under the name of

PointNet (Qi et al., 2017) or Deep Set networks (Zaheer et al., 2017).

We follow this approach and train a classifier that uses the locations of the

support points to predict a class. For a node vx with support X learned by the

unsupervised method, we pass every location xi ∈ X through a two-layer MLP with

ReLU activations, and then take the element-wise maximum operator across all

locations. The result is passed through a linear transformation to obtain the logits

c̃x. The function represented by the classifier can thus be written as follows:

c̃x = W max
i

({MLP(xi)|xi ∈ X}) + b (4.4)

The conditional distribution of classes for a given node is then obtained by passing

the logits through a softmax layer.

The results are shown in table 4.7b. As noted before, we note that the benefit

of using more than one support point is often not clear, and sometimes it can hurt

performance. In the case of Citeseer, using 4 points results in improvements in

accuracy. As in the case of link prediction, LSGAE still outperforms the use of

Wasserstein embeddings, and its accuracy is significantly larger than when using

1 point, which corresponds to a point embedding in Euclidean space. We also

experimented with classifiers that included regularization in the form of weight decay

and dropout, but under different values we could not find a setting with improved

generalization.

4.4 Summary

The experimental evaluation of our modular framework highlight its potential for

studying and improving methods for graph representation learning. In particular,

our experiments show that information about the graph needs to be present in at

least one module (e.g. encoder, or sampling strategy), to increase the predictive

performance of the representations. For instance, DGI fails with an MLP encoder,

because the sampling strategy considers the graph as the positive sample, and a

corrupted version as the negative sample. Without a graph neural network to encode

the features, the method does not have any way to leverage information about the

graph. Some choices in the representation might not be necessary as they add more
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complexity but they don’t provide significantly improved performance. This is the

case of G2G, where the Gaussian representation can be simplified as vectors in a

Euclidean space with pairs evaluated with the L2 distance, to obtain similar results

while halving the number of parameters.

We observe differences in the kind of methods that work well for link prediction

and node classification, with multiple assumptions that can have a positive or negative

impact depending on a specific network. It is in principle difficult to obtain a model

for link prediction that fits the training data very well while also generalizing, since

negative samples in the training set can be due to edges that have been removed

from the graph and are present in the test set, or actual cases of two unconnected

nodes. Furthermore, when using the inner product to score a pair, we maximize the

correlation of embeddings of nodes that are linked, whereas for node classification,

two nodes might be likely to be connected but do not necessarily belong to the same

community. The performance of a specific method is then tied to the homophily

characteristics of the network and other graph statistics.

The hyperparameter study led us to a linear method to learn embeddings

that consistently outperforms other methods for all datasets, that is close to the

formulation of GAE, but instead uses an SGC encoder and a hinge loss. The fact

that linear models are sufficient to obtain performance similar to more complex

alternatives for the networks that we have used, has been observed in previous works.

This motivates the use of different datasets, especially for link prediction, where in

many cases the performance is already high; and methods with improved performance

for node classification.

The modular framework admits including a variant to embed nodes in Wasserstein

spaces. In the previous chapter, preliminary experiments showed that such method

can indeed learn distributions that are close for positive samples, and far for negative

samples. However, when testing the method in link prediction and node classification

we observe that in spite of obtaining results that compete with existing methods, the

best number of points is often 1, which discards the distributional representation of

the embeddings. We note that Wasserstein embeddings fit very well to the training

data, but as used in our methods, they do not generalize for link prediction and

node classification. Using graph encoders can make this problem worse by increasing

overfitting.

Frogner et al. (2019) indicate that while Wasserstein spaces have been shown to

have high representational capacity, their generalization capabilities remain as an
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open question. The authors also report2 that the flexibility of these spaces produces

overfitting when applied to graph representation learning, and proper regularization

techniques towards ameliorating this problem are an open problem.

2Personal communication.

46



Chapter 5

Conclusion

In this thesis, we have explored current methods for unsupervised representation

learning on graphs, and we have identified a modular framework that can be used to

determine the extent to which existing algorithms can be improved. Our framework

is validated by findings that show that in some cases, changes in certain components

can lead to significant improvements or a reduction in the complexity of a model.

Furthermore, its modular nature allows it to continue being used to devise new

methods as research continues in the field, for instance in the topics of graph neural

network architectures, and variational inference for more complex representations.

Aiming to explore richer representations for nodes, we explored embeddings in

Wasserstein spaces. We found that conventional regularization techniques are not

enough to prevent their high representational capacity from causing overfitting, and

improving generalization is a promising direction for future work. Instead, in our

benchmarks, a linear model with regularization resulted in the best performance.

This gives an incentive for the use of new benchmark datasets that benefit from the

use nonlinear functions for representation learning.

The networks that we have used in our evaluation experiments have a wide

range of sizes. However, many real-world examples are much bigger and additional

measures must be taken when they do not fit in memory. An interesting direction

of future work consists of extending the evaluation to such graphs, by adapting

methods to a larger scale. Our experiments also showed that statistics of graphs

can be diverse, and can have an impact on a particular downstream task of interest.

We hope to gain improvements by further studying the relationship between these

statistics, the downstream task of interest, and the type of components that a method

of representation learning uses, while also considering additional downstream tasks,

such as graph classification.
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Sjöberg, J. and Ljung, L. Overtraining, regularization and searching for a minimum,

with application to neural networks. International Journal of Control, 62(6):

1391–1407, 1995.

Tang, L. and Liu, H. Leveraging social media networks for classification. Data

Mining and Knowledge Discovery, 23(3):447–478, 2011.

Tran, P. V. Learning to make predictions on graphs with autoencoders. In 2018 IEEE

5th International Conference on Data Science and Advanced Analytics (DSAA),

pp. 237–245. IEEE, 2018.

van den Berg, R., Hasenclever, L., Tomczak, J. M., and Welling, M. Sylvester

normalizing flows for variational inference. In Proceedings of the Thirty-

Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey,

California, USA, August 6-10, 2018, pp. 393–402, 2018.
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