A Modular Framework for **Graph Representation Learning** **Daniel Daza & Thomas Kipf** University of Amsterdam #### **Graph Unsupervised Learning** - We are interested in unsupervised methods for learning representations of nodes in undirected graphs in the absence of labeled data. - Representations can be used in downstream tasks like link prediction, node and graph classification, and for visualization purposes. - Recent approaches have been proposed aiming to learn useful representations for graphs of different sizes and structure. ### **Framework Description** We identify a set of fundamental components used throughout existing unsupervised learning methods: | Method | Encoder | Representation | Score | Loss | Sampling | | |----------|---------|--|---|---------------------------------|--|--| | DeepWalk | LUT | $\mathbf{z}_i \in \mathbb{R}^D$ | $\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$ | $-\log S - \log(1-\tilde{S})$ | (+) random walk neighbors
(-) non-neighbors | | | GAE | GCN | $\mathbf{z}_i \in \mathbb{R}^D$ | $\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$ | $-\log S - \log(1-\tilde{S})$ | (+) 1st order neighbors
(-) non-neighbors | | | S-VGAE | GCN | $\mathbf{z}_i \sim \text{vMF}(\mathbf{z})$ | $\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$ | $-\log S - \log(1 - \tilde{S})$ | (+) 1st order neighbors(-) non-neighbors | | | DGI | GCN | $\mathbf{z}_i \in \mathbb{R}^D$ | $\sigma\left(\mathbf{z}_{i}^{T}\mathbf{W}\mathbf{s}\right)$ | $-\log S - \log(1 - \tilde{S})$ | (+) original graph(-) corrupted graph | | | G2G | MLP | $\mathbf{z}_{\mu} \in \mathbb{R}^{D} \ \mathbf{z}_{\Sigma} \in \mathbb{R}^{D}$ | $\exp(-\mathrm{KL}(\mathcal{N}_i \mathcal{N}_j))$ | $(\log S)^2 + \tilde{S}$ | (+) 1st order neighbors(-) higher order neighbors | | - Graph encoder: assigns a node a low dimensional representation. It can leverage graph structure. - Representation: determines properties of the embedding: e.g. vector in a Euclidean space, Gaussian distribution, point clouds. - **Score:** a symmetric function that gives a measure of similarity between nodes. - Loss: most methods use a contrastive learning approach so that score is high for positive samples and low for negative samples. - **Sampling:** a strategy to choose positive and negative samples for a given node in the graph. - This description motivates a study of existing methods and potential variations of them. ## **Experiments** - We perform a comparative study of methods in the tasks of link prediction and node classification, and we introduce novel variants of these approaches based on different graph encoders, representations and scoring functions. - We run experiments with **DeepWalk** [1], **Graph** Autoencoders [2], Deep Graph Infomax [3], and Graph2Gauss [4]. - Datasets include graphs containing on the order of thousands to hundreds of thousands of nodes and edges, with varying degrees of connectivity #### Results | Method | Cora | Citeseer | Pubmed | Cora
Full | Coauthor
CS | Coauthor
Physics | |--------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Raw features | 76.8 ± 1.2 | 88.2 ± 0.9 | 89.6 ± 0.2 | 89.9 ± 0.2 | 92.3 ± 0.2 | 93.3 ± 0.1 | | DeepWalk | 92.0 ± 0.6 | 91.3 ± 0.5 | 91.3 ± 0.3 | 96.4 ± 0.1 | 95.7 ± 0.2 | 96.1 ± 0.1 | | MLP-DGI | 62.3 ± 2.2 | 69.1 ± 2.7 | 75.4 ± 0.9 | 66.8 ± 0.8 | 79.9 ± 0.8 | 80.9 ± 0.8 | | GCN-DGI | 88.5 ± 1.2 | 91.7 ± 1.2 | 93.2 ± 0.4 | 89.5 ± 0.4 | 87.4 ± 1.3 | 86.7 ± 0.9 | | SGC-DGI | $\textbf{92.4} \pm \textbf{0.7}$ | $\textbf{92.4} \pm \textbf{1.1}$ | $\textbf{96.2} \pm \textbf{0.3}$ | $\textbf{96.5} \pm \textbf{0.2}$ | $\textbf{87.7} \pm \textbf{2.3}$ | $\textbf{92.9} \pm \textbf{0.5}$ | | GCN-DGI-B | 93.2 ± 0.8 | 93.9 ± 0.7 | 92.8 ± 1.0 | 95.8 ± 0.4 | 94.1 ± 1.1 | 96.1 ± 0.5 | | MLP-GAE | 79.9 ± 1.5 | 83.1 ± 1.5 | 87.5 ± 0.6 | 83.7 ± 0.7 | 94.1 ± 0.2 | 94.3 ± 0.1 | | GCN-GAE | 91.9 ± 0.8 | 92.9 ± 0.9 | 94.9 ± 0.2 | 95.4 ± 0.2 | 96.2 ± 0.2 | 97.0 ± 0.1 | | SGC-GAE | $\textbf{93.1} \pm \textbf{0.8}$ | $\textbf{94.6} \pm \textbf{0.8}$ | $\textbf{96.0} \pm \textbf{0.4}$ | $\textbf{96.5} \pm \textbf{0.2}$ | $\textbf{96.7} \pm \textbf{0.1}$ | $\textbf{97.2} \pm \textbf{0.1}$ | | MLP-G2G | $\textbf{92.7} \pm \textbf{0.8}$ | 94.3 ± 0.7 | 92.8 ± 0.3 | 97.7 ± 0.2 | 63.2 ± 0.6 | 71.7 ± 0.7 | | MLP-G2V | 92.3 ± 0.8 | 93.9 ± 0.8 | 92.9 ± 0.3 | $\textbf{97.8} \pm \textbf{0.1}$ | 65.7 ± 0.4 | 71.5 ± 0.4 | | GCN-G2G | 92.5 ± 0.9 | 92.6 ± 0.8 | 93.7 ± 0.4 | 97.5 ± 0.2 | $\textbf{96.6} \pm \textbf{0.1}$ | $\textbf{97.2} \pm \textbf{0.1}$ | | GCN-G2V | $\textbf{92.7} \pm \textbf{0.8}$ | 92.5 ± 0.9 | $\textbf{94.0} \pm \textbf{0.4}$ | 97.7 ± 0.2 | $\textbf{96.6} \pm \textbf{0.1}$ | $\textbf{97.2} \pm \textbf{0.1}$ | - Variants of existing methods can exhibit significantly improved performance. - Under some configurations, simplified convolutional encoders can exhibit lower generalization. - Graph properties can have an important effect depending on the method of choice. - Certain modeling choices made in previous works are less important than previously believed, and other optimization-related choices are sometimes responsible for improved performance. - The right method is data-dependent: methods can be tailored to a specific graph and task through hyperparameter search across components: # Conclusions - The described modular framework is of practical use for devising methods for unsupervised learning on graphs, and highlightinging strengths and weaknesses of existing approaches. - Our framework motivates hyperparameter search strategies so that learned node embeddings are better suited to datasets and tasks of interest. - Directions for future work include extending our analysis to large scale graphs, and additional downstream tasks for evaluation, such as graph classification.