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A Modular Framework for
Graph Representation Learning

Daniel Daza & Thomas Kipf

: : A
University of Amsterdam &
5 S 0S
: : = @ 5
Graph Unsupervised Learning S
e -
O Sheg
e \We are interested in unsupervised methods for
learning representations of nodes in undirected .
graphs in the absence of labeled data.
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e Representations can be used in downstream tasks i el &
like link prediction, node and graph classification,
and for visualization purposes. Results
e Recent approaches have been proposed aiming to
learn useful representations for graphs of different
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e Graph encoder: assigns a node a low dimensional
representation. It can leverage graph structure.

e Representation: determines properties of the
embedding: e.g. vector in a Euclidean space,
Gaussian distribution, point clouds.

e Score: a symmetric function that gives a measure of
similarity between nodes.

e Loss: most methods use a contrastive learning
approach so that score is high for positive samples
and low for negative samples.

e (Graph properties can have an important effect

depending on the method of choice.

e (Certain modeling choices made in previous works
are less important than previously believed, and
other optimization-related choices are sometimes

responsible for improved performance.

e The right method is data-dependent: methods can
be tailored to a specific graph and task through
hyperparameter search across components:

encoder_str

loss_str

sampling_str

Objective

genmip T 3 — /*‘"‘9*’—'”3" < - ; Q\\\_///?/?\ : ,3;-
e Sampling: a strategy to choose positive and S e P & -
negative samples for a given node in the graph. o | o />\/\/\/ | y
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e This description motivates a study of existing S e S | g R RN
methods and potential variations of them. R
Experiments Conclusions

e We perform a comparative study of methods in the
tasks of link prediction and node classification,
and we introduce novel variants of these
approaches based on different graph encoders,
representations and scoring functions. °

e We run experiments with DeepWalk [1], Graph
Autoencoders [2], Deep Graph Infomax [3], and

Graph2Gauss [4].

e Datasets include graphs containing on the order of
thousands to hundreds of thousands of nodes and
edges, with varying degrees of connectivity
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e The described modular framework is of practical
use for devising methods for unsupervised learning
on graphs, and highlightinging strengths and
weaknesses of existing approaches.

Our framework motivates hyperparameter search
strategies so that learned node embeddings are
better suited to datasets and tasks of interest.

e Directions for future work include extending our
analysis to large scale graphs, and additional
downstream tasks for evaluation, such as graph
classification.
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