

A Modular Framework for **Graph Representation Learning**

Daniel Daza & Thomas Kipf University of Amsterdam

Graph Unsupervised Learning

- We are interested in unsupervised methods for learning representations of nodes in undirected graphs in the absence of labeled data.
- Representations can be used in downstream tasks like link prediction, node and graph classification, and for visualization purposes.
- Recent approaches have been proposed aiming to learn useful representations for graphs of different sizes and structure.

Framework Description

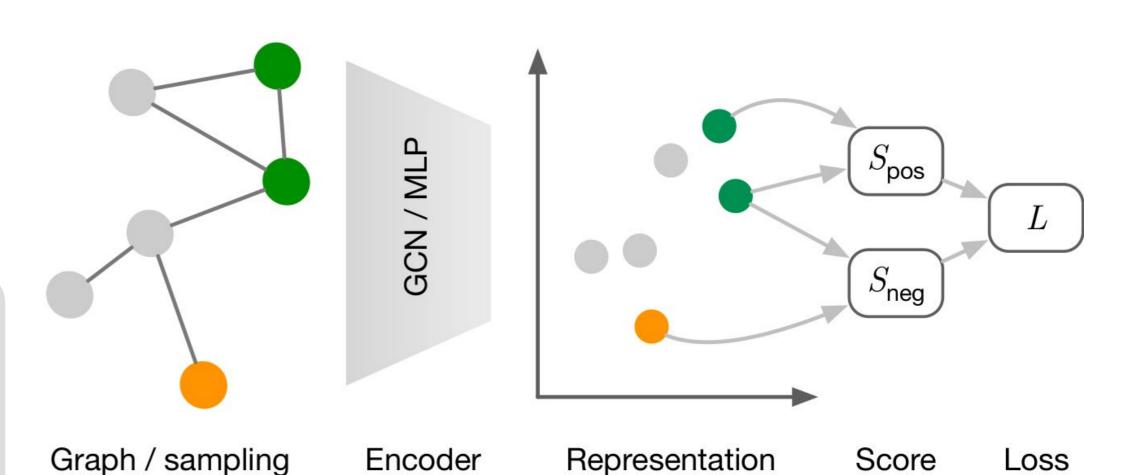
 We identify a set of fundamental components used throughout existing unsupervised learning methods:

Method	Encoder	Representation	Score	Loss	Sampling	
DeepWalk	LUT	$\mathbf{z}_i \in \mathbb{R}^D$	$\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$	$-\log S - \log(1-\tilde{S})$	(+) random walk neighbors (-) non-neighbors	
GAE	GCN	$\mathbf{z}_i \in \mathbb{R}^D$	$\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$	$-\log S - \log(1-\tilde{S})$	(+) 1st order neighbors (-) non-neighbors	
S-VGAE	GCN	$\mathbf{z}_i \sim \text{vMF}(\mathbf{z})$	$\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$	$-\log S - \log(1 - \tilde{S})$	(+) 1st order neighbors(-) non-neighbors	
DGI	GCN	$\mathbf{z}_i \in \mathbb{R}^D$	$\sigma\left(\mathbf{z}_{i}^{T}\mathbf{W}\mathbf{s}\right)$	$-\log S - \log(1 - \tilde{S})$	(+) original graph(-) corrupted graph	
G2G	MLP	$\mathbf{z}_{\mu} \in \mathbb{R}^{D} \ \mathbf{z}_{\Sigma} \in \mathbb{R}^{D}$	$\exp(-\mathrm{KL}(\mathcal{N}_i \mathcal{N}_j))$	$(\log S)^2 + \tilde{S}$	(+) 1st order neighbors(-) higher order neighbors	

- Graph encoder: assigns a node a low dimensional representation. It can leverage graph structure.
- Representation: determines properties of the embedding: e.g. vector in a Euclidean space, Gaussian distribution, point clouds.
- **Score:** a symmetric function that gives a measure of similarity between nodes.
- Loss: most methods use a contrastive learning approach so that score is high for positive samples and low for negative samples.
- **Sampling:** a strategy to choose positive and negative samples for a given node in the graph.
- This description motivates a study of existing methods and potential variations of them.

Experiments

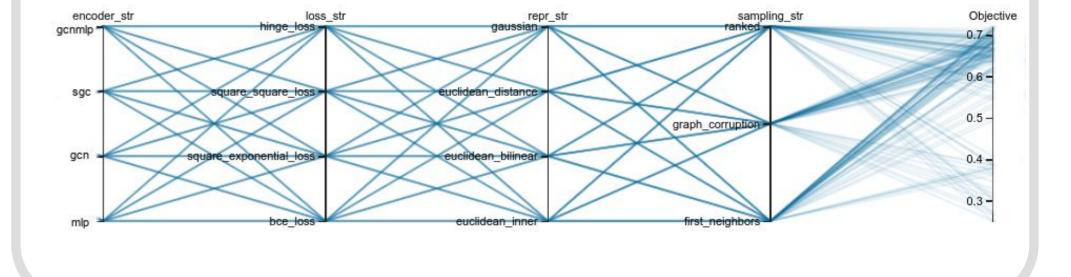
- We perform a comparative study of methods in the tasks of link prediction and node classification, and we introduce novel variants of these approaches based on different graph encoders, representations and scoring functions.
- We run experiments with **DeepWalk** [1], **Graph** Autoencoders [2], Deep Graph Infomax [3], and Graph2Gauss [4].
- Datasets include graphs containing on the order of thousands to hundreds of thousands of nodes and edges, with varying degrees of connectivity



Results

Method	Cora	Citeseer	Pubmed	Cora Full	Coauthor CS	Coauthor Physics
Raw features	76.8 ± 1.2	88.2 ± 0.9	89.6 ± 0.2	89.9 ± 0.2	92.3 ± 0.2	93.3 ± 0.1
DeepWalk	92.0 ± 0.6	91.3 ± 0.5	91.3 ± 0.3	96.4 ± 0.1	95.7 ± 0.2	96.1 ± 0.1
MLP-DGI	62.3 ± 2.2	69.1 ± 2.7	75.4 ± 0.9	66.8 ± 0.8	79.9 ± 0.8	80.9 ± 0.8
GCN-DGI	88.5 ± 1.2	91.7 ± 1.2	93.2 ± 0.4	89.5 ± 0.4	87.4 ± 1.3	86.7 ± 0.9
SGC-DGI	$\textbf{92.4} \pm \textbf{0.7}$	$\textbf{92.4} \pm \textbf{1.1}$	$\textbf{96.2} \pm \textbf{0.3}$	$\textbf{96.5} \pm \textbf{0.2}$	$\textbf{87.7} \pm \textbf{2.3}$	$\textbf{92.9} \pm \textbf{0.5}$
GCN-DGI-B	93.2 ± 0.8	93.9 ± 0.7	92.8 ± 1.0	95.8 ± 0.4	94.1 ± 1.1	96.1 ± 0.5
MLP-GAE	79.9 ± 1.5	83.1 ± 1.5	87.5 ± 0.6	83.7 ± 0.7	94.1 ± 0.2	94.3 ± 0.1
GCN-GAE	91.9 ± 0.8	92.9 ± 0.9	94.9 ± 0.2	95.4 ± 0.2	96.2 ± 0.2	97.0 ± 0.1
SGC-GAE	$\textbf{93.1} \pm \textbf{0.8}$	$\textbf{94.6} \pm \textbf{0.8}$	$\textbf{96.0} \pm \textbf{0.4}$	$\textbf{96.5} \pm \textbf{0.2}$	$\textbf{96.7} \pm \textbf{0.1}$	$\textbf{97.2} \pm \textbf{0.1}$
MLP-G2G	$\textbf{92.7} \pm \textbf{0.8}$	94.3 ± 0.7	92.8 ± 0.3	97.7 ± 0.2	63.2 ± 0.6	71.7 ± 0.7
MLP-G2V	92.3 ± 0.8	93.9 ± 0.8	92.9 ± 0.3	$\textbf{97.8} \pm \textbf{0.1}$	65.7 ± 0.4	71.5 ± 0.4
GCN-G2G	92.5 ± 0.9	92.6 ± 0.8	93.7 ± 0.4	97.5 ± 0.2	$\textbf{96.6} \pm \textbf{0.1}$	$\textbf{97.2} \pm \textbf{0.1}$
GCN-G2V	$\textbf{92.7} \pm \textbf{0.8}$	92.5 ± 0.9	$\textbf{94.0} \pm \textbf{0.4}$	97.7 ± 0.2	$\textbf{96.6} \pm \textbf{0.1}$	$\textbf{97.2} \pm \textbf{0.1}$

- Variants of existing methods can exhibit significantly improved performance.
- Under some configurations, simplified convolutional encoders can exhibit lower generalization.
- Graph properties can have an important effect depending on the method of choice.
- Certain modeling choices made in previous works are less important than previously believed, and other optimization-related choices are sometimes responsible for improved performance.
- The right method is data-dependent: methods can be tailored to a specific graph and task through hyperparameter search across components:



Conclusions

- The described modular framework is of practical use for devising methods for unsupervised learning on graphs, and highlightinging strengths and weaknesses of existing approaches.
- Our framework motivates hyperparameter search strategies so that learned node embeddings are better suited to datasets and tasks of interest.
- Directions for future work include extending our analysis to large scale graphs, and additional downstream tasks for evaluation, such as graph classification.

